Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Understanding animal social networks can aid wildlife conservation

23.06.2017

As with humans, most animals prefer to associate with some individuals and not with others. The social structure can influence how a population responds to changes in its environment. Examining social networks is a promising technique for understanding, predicting and – if for the better – manipulating this structure. However, whereas the contribution of behavioural biology to conservation is already well recognized, the usefulness of animal social network analysis as a conservation tool has not yet been addressed.

A group of behavioural ecologists led by Lysanne Snijders from the Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB) outlines how the understanding of relationships between animals could be applied by wildlife managers and conservationists to support their work in disease management, breeding programs, reintroductions or relocations, or for controlling problem behaviours – to name just a few.


California sea lions are very social animals and love to interact with other members of their group.

Photo: Pixabay


Infographic illustrating changes in a social network.

Infographic: Trends in Ecology & Evolution

Animal social network studies examine how the individuals of a population are socially connected, how they interact and associate. Knowledge of the social structure can help to identify the flow of information or the spread of disease, and has potential to be used as an indicator of upcoming population changes. Information of that kind would be less – or not at all – noticeable using methods purely based on population size or the observation of single individuals.

Dr Lysanne Snijders, Post Doctoral Researcher at the Department of Biology and Ecology of Fishes at IGB, describes this approach with the help of Aristotle: “The whole is greater than the sum of its parts. Combined effects of social interactions in wildlife populations do not only have important theoretical but also practical implications. Linking animal social network theory to practice can therefore stimulate the design of new practical conservation tools and generate novel insights into how animal social networks change over time.”

An example from real wildlife

For many species, it is not just diseases that can spread rapidly. Social information can also be transmitted via various routes within a group, for instance, innovative ways to search for food. In the case of the California sea lion, novel foraging strategies have led to conflict with a fishery conservation scheme.

The sea lions had discovered that salmonids migrating upriver became more concentrated at a dam, making them easy prey. Unfortunately, those salmonids were endangered species. A recent study [1] showed that knowledge of the network structure could have helped wildlife managers to detect that at first it was only a few successful individuals who “recruited” the others, and that the selective removal of these information spreaders could have contained the problem. In this case social network analysis could therefore have assisted in protecting the endangered salmonids while culling fewer sea lions.

Snijders also suggests a possible example for how animal social network analysis could be used in conservation work in Europe: “In cases of recently reintroduced group living animals, such as the European bison, social network analyses could give insights into how a population’s long-term persistence might vary with particular behavioural processes within the group. But also into how group and individual movements might be effectively manipulated to avoid human-wildlife conflicts such as entering restricted areas like farm land.”

Perspectives for implementation

In a field in which funds and time are limited, any newly suggested approach should have a distinct added value. Not every conservation challenge that is linked to a species’ social behaviour will require a social network approach to address it. The scientists also acknowledge that their proposal has to overcome another important hurdle first: before applying the knowledge of social relationships to management practices, it should become feasible and cost-effective to collect the required data in the first place. But with technological options becoming more common and affordable, an animal social network analysis approach could increasingly become an option.

There are several methods out there that have been successfully applied to map wildlife social networks, ranging from sampling individuals at fixed locations, to walking transects, to automatically spatially tracking the animals. Rapid advancements in technology, like proximity loggers and GPS tags, allow for ever smaller animal species to be tracked, while at the same time becoming more affordable. In addition, collaborations between research institutes and conservationists might provide opportunities for sharing the costs or the technology.

Article:
Snijders, L., Blumstein, D. T., Stanley C. R., Franks, D. W. (2017): Animal Social Network Theory Can Help Wildlife Conservation. Trends in Ecology and Evolution.

Read this article > https://doi.org/10.1016/j.tree.2017.05.005

References:
[1] Zachary A. Schakner, Michael G. Buhnerkempe, Mathew J. Tennis, Robert J. Stansell, Bjorn K. van der Leeuw, James O. Lloyd-Smith, Daniel T. Blumstein (2016): Epidemiological models to control the spread of information in marine mammals. DOI: 10.1098/rspb.2016.2037

Contact person:
Dr Lysanne Snijders
Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB)
snijders@igb-berlin.de
+31 (0)624488737

About IGB:
http://www.igb-berlin.de/en
Work at IGB combines basic research with preventive research as a basis for the sustainable management of freshwaters. In the process, IGB explores the structure and function of aquatic ecosystems under near-natural conditions and under the effect of multiple stressors. Its key research activities include the long-term development of lakes, rivers and wetlands under rapidly changing global, regional and local environmental conditions, the development of coupled ecological and socio-economic models, the renaturation of ecosystems, and the biodiversity of aquatic habitats. Work is conducted in close cooperation with universities and research institutions from the Berlin/Brandenburg region as well as worldwide. IGB is a member of the Forschungsverbund Berlin e.V., an association of eight research institutes of natural sciences, life sciences and environmental sciences in Berlin. The institutes are members of the Leibniz Association.

Katharina Bunk | idw - Informationsdienst Wissenschaft

Further reports about: Freshwater Ecology IGB aquatic ecology sea lions social network

More articles from Ecology, The Environment and Conservation:

nachricht 100 % Organic Farming in Bhutan – a Realistic Target?
15.06.2018 | Humboldt-Universität zu Berlin

nachricht What the size distribution of organisms tells us about the energetic efficiency of a lake
05.06.2018 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>