Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Treating ships’ ballast water: filtration preferable to disinfection


Untreated ballast water discharge from ships can spread living organisms and even pathogens across the world thereby introducing non-native or invasive species into the local environment. Scientists at Helmholtz Zentrum München therefore recommend using physical treatment processes such as filtration rather than electrochemical disinfection, which creates countless potentially toxic compounds. These are the findings of a recent study published in the journal ‘Environmental Science and Technology’.

In order to prevent the transfer of harmful organisms, ships’ ballast water is often subjected to electrochemical disinfection.* “However, our analyses show that electrochemical disinfection creates numerous so-called disinfection by-products (DBPs),” explains Prof. Philippe Schmitt-Kopplin, who led the study.

The disinfection of ballast water generates a multitude of by-products.

Source: Evren Kalinbacak / Fotolia

He and his team at the Analytical BioGeoChemistry (BGC) research unit at the Helmholtz Zentrum München, working in close collaboration with colleagues in the US, compared samples of treated and untreated ballast water. Using high-resolution mass spectrometry, they discovered that treatment led to the formation of 450 new, diverse compounds, some of which had not previously been described as disinfection products or been structurally categorized.

Using alternative methods

“Until the toxicological features of these compounds are fully clarified, we recommend a cautious approach to disinfecting ballast water,” Schmitt-Kopplin notes. According to the scientists, the study – the first in-depth analysis of DBPs in ballast water – first and foremost revealed the high degree of complexity of the resulting products. As an alternative, Philippe Schmitt-Kopplin recommends the use of physical processes such as filtration or adsorption.**

Growing significance due to global trade

In addition, the Helmholtz researchers point out the broader significance of their findings: as a result of the increasing dissemination of goods around the world, a growing number of ever-larger ships are being used.

These vessels take on correspondingly large and increasing amounts of ballast water in order to stabilize their position in the water and to balance out any changes in the weight of goods or fuel during the journey. Experts worldwide are now discussing ways of dealing with this water, as discharging untreated ballast water will be prohibited in the future. The alternative method of choice at present is electrochemical disinfection.

“Large volumes of disinfected ballast water are distributed daily in coastal waters, but as yet their impact on the environment cannot be foreseen,” says first author Michael Gonsior of the University of Maryland’s Center for Environmental Science. “In future studies, we want to find out what influence the DPSs have on coastal ecosystems.” Now the researchers hope that their data will help to shift the focus more towards alternative methods.

Further information:

*During electrochemical disinfection, electricity is used to generate chemically active components directly by means of electrolysis, i.e. by passing an electric current through it.

**Another study related to human health of the team of Prof. Schmitt-Kopplin revealed similar processes in drinking water:

Original publication:
Gonsior, M. et al. (2015). Bromination of Marine Dissolved Organic Matter Following Full Scale Electrochemical Ballast Water Disinfection. Environmental Science & Technology, DOI : 10.1021/acs.est.5b01474

As German Research Center for Environmental Health, Helmholtz Zentrum München pursues the goal of developing personalized medical approaches for the prevention and therapy of major common diseases such as diabetes mellitus and lung diseases. To achieve this, it investigates the interaction of genetics, environmental factors and lifestyle. The Helmholtz Zentrum München has about 2,300 staff members and is headquartered in Neuherberg in the north of Munich. Helmholtz Zentrum München is a member of the Helmholtz Association, a community of 18 scientific-technical and medical-biological research centers with a total of about 37,000 staff members.

The independent Analytical BioGeoChemistry Research Unit (BGC) investigates molecular interactions among substances in biogeosystems. Together with separation procedures and mathematical methods, high-resolution methods of organic structural characterization allow a precise space and time-resolved analysis. The goal is to achieve a better understanding of molecular processes in ecosystems and to improve the identification of biomarkers in organisms. The BGC is a part of the Department of Environmental Sciences.

Contact for the media:
Department of Communication, Helmholtz Zentrum München – German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg - Phone: +49 89 3187 2238 - Fax: +49 89 3187 3324 – E-mail:

Scientific contact at Helmholtz Zentrum München:
Prof. Dr. Philippe Schmitt-Kopplin, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Analytical BioGeoChemistry Research Unit, Ingolstädter Landstr. 1, 85764 Neuherberg - Tel. +49 89 3187 3246 - E-mail:

Weitere Informationen: - Link to the publication - Press releases Helmholtz Zentrum München - Research Unit Analytical BioGeoChemistry

Kommunikation | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>