Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The ecological role of fruit aroma

13.04.2016

Fruit odor may have evolved to advertise ripeness to seed-dispersing primates

Fruits are a highly valuable source of food. They are packed with tasty and healthy nutrients and are often characterized by alluring colorful displays and an attractive aroma. Yet it is still unclear which evolutionary forces drove fruits to acquire such a diverse range of different attractive traits.


Moustached tamarins feeding on fruits of Leonia cymosa at the DPZ field station in Peru. Tamarins are among the primates dispersing the seeds of Leonia.

Photo: Adrian Reinehr


Ripe and unripe fruits of Leonia cymosa, one of the studied species, at the DPZ field station in Peruvian Amazonia.

Photo: Adrian Reinehr

In two new studies, scientists from the German Primate Center and their international collaboration partners show that the aroma of ripe fruits may be an adaptation whose function is to attract primates to consume the fruits and consequently disperse their seeds (Scientific Reports, 2015; Journal of Chemical Ecology, 2016).

Immobile plants rely on vertebrates such as primates, birds and bats, which disperse their seeds over large ranges. Fleshy fruits are long known to have evolved to be attractive to these vertebrates. In return to seed-dispersal services, they provide fleshy pulps rich in nutrients such as sugars, fat, protein, vitamins and minerals.

... more about:
»ecology »fruits »monkeys »primates

In addition, many fruits acquired traits such as colorful displays, which increase their detectability and attractiveness to vertebrate seed dispersers. Fruit aroma, just like color, may advertise ripeness and quality to seed dispersers who rely strongly on their sense of smell. Yet until recently, this idea has received very little attention.

Primates as seed dispersers

Primates are among the most important seed dispersers in tropical ecosystems. Until recently, they have been considered to be primarily visual animals whose reliance on the sense of smell is limited. Yet several studies from the past years indicate that primates in fact possess a well-developed sense of smell. Thus, fruits that rely on primates’ seed dispersal services may have also evolved to advertise their ripeness and quality through ripe fruit aroma.

Fruit aroma advertises ripeness

Two recent studies, led by scientists from the German Primate Center in collaboration with scientists from Germany, Sweden and Mexico, have tested this hypothesis and provide the first evidence that fruit aroma may be an adaptation whose function is to advertise ripeness to seed-dispersing primates. In one study, the group examined patterns of odor emission from ripe and unripe fruits. Fruit odor samples were collected at the DPZ field station in the heart of the Peruvian Amazonian rainforest.

The results showed that fruits dispersed by primates tend to change their odor profiles upon ripening, thus providing a unique and reliable aroma signature that can allow primates to identify ripe fruits. In contrast, fruits dispersed by birds, which tend to rely on vision rather than the sense of smell, do not change their odor profiles upon ripening. As a result, the odors of bird-dispersed ripe fruits are very similar to those of unripe fruits and fruit aroma is not a reliable ripeness cue in these species. The fact that a substantial change of odor is apparent only in fruits dispersed by primates indicates that it is not a byproduct of fruit maturation that characterizes all fleshy fruits, but rather a trait which is present only in fruits whose main seed disperser is likely to use the odor to identify ripe fruits.

Monkeys identify ripe fruits by their odor

Consequently, a second study attempted to examine how well primates can “work” with the odor signals provided by these fruits. The scientists created several synthetic odor mixtures that mimicked the odors of ripe and unripe fruits, as well as fruits of varying degrees of ripeness. They then conducted experiments with spider monkeys, a species which specializes on ripe fruits and provides seed-dispersal services to many plant species.

The experiments tested whether spider monkeys can discriminate between the odors of ripe fruits and either unripe or partially unripe fruits. The results were clear: spider monkeys excelled in the task. They easily discriminated between the odors and were repeatedly able to use this ability to successfully locate rewards. These results confirm that spider monkeys are capable of relying on the odors emitted by fruits to identify that they are ripe. Furthermore, they can do so even when the odor of unripe fruits becomes increasingly similar to the odor of ripe fruits. Thus, fruit odor is a reliable signal, which allows spider monkeys to identify ripe fruits.

“Taken together, our studies demonstrate for the first time that the pleasant aroma that characterizes many ripe fruits may have an important ecological function of mediating the communication between plants and primates that disperse their seeds”, says Omer Nevo, lead author of both publications. “Primates benefit from the ability to easily and reliably identifying ripe fruits. In return, plants are selected to provide odorous fruits that attract primates and promote seed dispersal.”

Original publications

Nevo O, Heymann EW, Schulz S & Ayasse M. 2016. Fruit odor as a ripeness signal to seed-dispersing primates? A case study on four Neotropical plant species. Journal of Chemical Ecology. DOI: 10.1007/s10886-016-0687-x.

Nevo O, Orts Garri R, Hernandez Salalzar LT, Schulz S, Heymann EW, Ayasse M & Laska M. 2015. Chemical recognition of fruit ripeness in spider monkeys (Ateles geoffroyi). Scientific Reports 5: 14895. DOI: 10.1038/srep14895.

Contact

Dr. Omer Nevo
Behavioral Ecology & Sociobiology Unit, German Primate Center and
Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm
E-mail: omer.nevo@evolutionary-ecology.de

Dr. Susanne Diederich
Communication, German Primate Center
Tel: +49 551 3851-359
E-mail: sdiederich@dpz.eu

The German Primate Center (DPZ) in Göttingen, Germany, conducts basic research on and with primates in the areas of infectious diseases, neurosciences and organismic biology. In addition, it operates four field stations abroad and is a competence and reference center for primate research. The DPZ is one of the 88 research and infrastructure institutions of the Leibniz Association in Germany. www.dpz.eu

Weitere Informationen:

http://www.dpz.eu/en/home/single-view/news/verfuehrerischer-geruch-sichert-samen...

Dr. Susanne Diederich | idw - Informationsdienst Wissenschaft

Further reports about: ecology fruits monkeys primates

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>