Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The dispersal of alien species redefines biogeography

12.06.2015

It has been hypothesized that globalization of human-mediated dispersal of species may break down biogeographic boundaries. However, empirical tests had been lacking until recently.

An international research team has now discovered a comprehensive biogeographic reorganization for 175 species of alien gastropods across 56 countries. The data shows that homogenization is indeed happening. Geographic barriers to dispersal have fallen down but climate still limits how species colonize new areas. The study was published in the prestigious scientific journal Science.


The white garden snail (Theba pisana), an European species that is now wide spread in temperate regions

Photo: César Capinha

When the first explorers sailed around the world they found that the further away they traveled, the more different were the species and ecosystems they found. This happens because there are geographical barriers to dispersal. One of the main barriers to dispersal is the ocean.

Therefore, species in the same continent share a common evolutionary history, but species in continents that have not been connected in the past or in the present have followed different evolutionary paths and have diverged. Humans and goods travelling over the last few centuries have lead, intentionally or, most often, unintentionally, to the dispersal of species to new places.

This human-mediated dispersal has been hypothesized to homogenize biodiversity and perhaps change the biogeographic regions, but this hypothesis had never been tested globally.

An international team of 5 researchers from Portugal, Austria and Germany tested the homogenization hypothesis by looking at 175 species of alien gastropods (snails) across 56 countries and subregions. For each location they compiled the list of alien species occurring there to obtain the global contemporary distribution of alien species – this is, the distribution of snails after human-mediated dispersal.

The researchers then went to look at where these alien species were before the human-mediated dispersal. For each snail species they compiled the list of countries where they were native. The study comes in the wake of recent studies that could not find significant trends in biodiversity loss at the local scale over the last decades. “We therefore took a different angle.

We didn’t test whether there has been species richness changes in communities over time. Instead we asked how is the similarity between species communities changing,” said Prof. Henrique Miguel Pereira from the German Centre for Integrative Biodiversity Research (iDiv) and Martin Luther University of Halle-Wittenberg, senior author of the study.

And the results were striking. “As expected, before human-mediated dispersal, similar communities were found within each major biogeographic region. But after human-mediated dispersal, the communities of aliens follow a completely new pattern and are organized into only two large biogeographic regions: tropics and temperate areas,” César Capinha, lead author of the study, explained.

It follows that communities of species in temperate areas are more similar to other communities in temperate areas, independently of the continent where they are, and the same happens for tropical communities. Before, human-mediated dispersal, no species were shared by communities separated by more than 11,000km, and very few species were shared between communities separated by more than 6,500km. Now, even locations as far away as 20,000km can share a large number of species.

In the past, geographical distance was the main factor determining the similarity. Now, climate is the major factor, with also a contribution of the distance and the amount of trade between countries, particularly the trade of goods that are vectors for the transport of snails, such as roof tiles, live plants, vegetables and fruits. This means that for similar climates, the stronger the trade of these products between two countries is, the more similar the species communities in those countries become.

The new study is the first global analysis of how invasions are reorganizing biogeographic patterns which have evolved over millions of years, and provides evidence that major biodiversity changes are underway. The study confirms that homogenization is happening, but filtered by climate. Geographic barriers to dispersal have fallen down but climate still limits how species colonize new areas. This suggests that in the future, communities will become increasingly similar to any other community with a similar climate anywhere in the globe. The authors warn that this expansion of alien species also places pressure on native species, as alien species have caused more species extinctions than any other pressure during the last 500 years.

Original publication:
César Capinha, Franz Essl, Hanno Seebens, Dietmar Moser, Henrique Miguel Pereira: The dispersal of alien species redefines biogeography in the Anthropocene, in: Science, 12 June 2015

For further information, please contact:

Henrique Miguel Pereira
German Centre for Integrative Biodiversity Research (iDiv)
Cell: +49 (0) 151 612 51644
hpereira@idiv.de

César Capinha
REFER Biodiversity Chair, Portugal
ccapinha@cibio.up.pt

Press Contact
Annette Mihatsch
Phone: +49 (0) 341 9733106
presse@idiv.de

Annette Mihatsch | idw - Informationsdienst Wissenschaft

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>