Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Taking a molecular approach to conserving freshwater biodiversity

09.11.2015

Molecular ecologists have a key role to play in setting priorities for the conservation of aquatic biodiversity, according to a recent review paper published in the Pertanika Journal of Tropical Agricultural Sciences.

By applying DNA sequencing and related tools, molecular ecologists can collaborate with other ecologists, especially in the fields of species distribution modelling and conservation planning, argues the paper’s author, Jane Hughes, of the Australian Rivers Institute.


As the world’s population grows, human water needs are growing accordingly, reducing the amount of water available for sustaining freshwater biodiversity.

Copyright : lapis2380

“This approach will help to prioritise conservation actions for the best possible outcomes.”

As the world’s population grows, human water needs are growing accordingly, reducing the amount of water available for sustaining freshwater biodiversity. This situation will likely worsen in areas where rainfall decreases as a result of global climate change.

Growing human demand for water will affect biodiversity primarily by increasing the number of dams, which already number over one million globally, as well as the extraction of water for agriculture and aquaculture. “Already, declines in freshwater biodiversity are far greater than in terrestrial systems [i.e. ecosystems present on land],” notes Dr Hughes.

For competing needs to be managed, we need accurate and efficient ways to assess our biodiversity, she stresses. “Currently, species are going extinct more quickly than we can recognise them.”

We also need accurate and efficient ways to assess the current and historical connectivity among populations, as well as the need for freshwater species to maintain connectivity with other habitats such as the floodplain or the estuary, adds Dr Hughes. “Finally, we need to develop methods for prioritising which rivers, streams or reaches should best be preserved or protected in order to maximise protection of biodiversity.”

Molecular ecologists can contribute to these challenges in many ways, says Dr Hughes. In her paper, she discusses recent advances in the assessment of biodiversity, methods for assessing connectivity among aquatic populations, how to combine molecular approaches with other methods to understand migration patterns, and future options that could improve our ability to conserve freshwater biodiversity.

“A multidisciplinary approach that incorporates new technological approaches in acquisition of molecular data is the best way forward for our aquatic biodiversity,” she concludes.


For more information about each research, please contact:

Professor Jane M. Hughes
Australian Rivers Institute
Griffith University,
Nathan Queensland 4111,
Australia
Email: Jane.Hughes@griffith.edu.au
Tel: +(617) 373 57376


About Pertanika Journal of Tropical Agricultural Science (JTAS)
Pertanika Journal of Tropical Agricultural Science (JTAS) is published by Universiti Putra Malaysia in English and is open to authors around the world regardless of nationality. The journal is published four times a year in February, May, August and November. Other Pertanika series include Pertanika Journal of Science & Technology (JST), and Pertanika Journal of Social Sciences & Humanities (JSSH).

JTAS aims to provide a forum for high quality research related to tropical agricultural research. Areas relevant to the scope of the journal include: agricultural biotechnology, biochemistry, biology, ecology, fisheries, forestry, food sciences, entomology, genetics, microbiology, pathology and management, physiology, plant and animal sciences, production of plants and animals of economic importance, and veterinary medicine. The journal publishes original academic articles dealing with research on issues of worldwide relevance.

Website: http://www.pertanika.upm.edu.my/

The papers are available from these links:
http://www.pertanika.upm.edu.my/Pertanika%20PAPERS/JTAS%20Vol.%2038%20(4)%20Nov.%202015/01%20ED07-2015%20-%20Invited%20review%20Article.pdf  

For more information about the journal, contact:

The Chief Executive Editor (UPM Journals)
Head, Journal Division, UPM Press
Office of the Deputy Vice Chancellor (R&I)
IDEA Tower 2, UPM-MDTC Technology Centre
Universiti Putra Malaysia
43400 Serdang, Selangor
Malaysia.

Phone: +(603) 8947 1622 | +(6016) 217 4050
Email: nayan@upm.my

Date of Release: 6 November 2015.

Acknowledgements
The Chief Executive Editor, UPM Journals


Associated links
Pertanika Journal website
Read the research paper

Dr Nayan KANWAL, FRSA, ABIM, AMIS, Ph.D. | Research SEA
Further information:
http://www.researchsea.com

Further reports about: Agricultural Pertanika conservation freshwater

More articles from Ecology, The Environment and Conservation:

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

nachricht Species Richness – a false friend? Scientists want to improve biodiversity assessments
01.08.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>