Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Successful calculation of human and natural influence on cloud formation

04.11.2016

Publication in Science: CLOUD data are fed into a global aerosol model to calculate climate effect.

When new particles develop in the atmosphere, this influences cloud formation and with that the climate too. Since a few years, these complex processes have been reproduced in a large air chamber within the CLOUD experiment at CERN.


CLOUD

GU

Researchers have now used the results for the first time to calculate the production of aerosol particles in all the Earth’s regions and at different heights. The study published in the journal “Science”, in which researchers from Goethe University Frankfurt were involved, deciphers the role of the various chemical systems which are responsible for particle formation. They also determined the influence of ions which develop through cosmic radiation.

Soot particles, dust lifted up by the wind or sea spray account for only some of the particles in the atmosphere. Others develop from certain trace vapours, for example when individual sulphuric acid and water molecules cluster as tiny droplets. This formation of new particles is known as nucleation.

Clouds are formed by water condensing on the larger aerosol particles or what are known as cloud condensation nuclei. The more cloud droplets develop, the more sunlight is reflected back into space. Climate models show that the additional particles caused by human activity produce a cooling effect which partially offsets the greenhouse effect. It is, however, less than previously assumed.

Aerosol particles from sulphuric acid and ammonia emissions

The model calculations presented in “Science” prove that about half the cloud condensation nuclei in the atmosphere originate from nucleation. In the atmosphere today, particle formation is dominated almost everywhere by mechanisms where at least three chemical components must come together: apart from the two basic substances, i.e. sulphuric acid and water, these are either ammonia or specific organic compounds such as oxidation products from terpenes. Close to ground level, organic substances from natural sources are important, whilst ammonia plays a key role higher up in the troposphere. Ammonia and sulphur emissions have increased considerably over the past decades as a result of human activities.

11-year solar cycle has scarcely any influence

CLOUD has also investigated how the 11-year solar cycle influences the formation of aerosol particles in our present-day atmosphere. The model calculations show that the effects as a result of changes in ionisation through the sun are too small to make a significant contribution to cloud formation. Although the ions are originally involved in the development of almost one third of all newly formed particles, the concentration of the large cloud condensation nuclei in the course of the 11-year cycle changes by only 0.1 percent – not enough to have any sizeable influence on the climate.

Cooling effects 27 percent less than expected

The CLOUD team has also presented first global model calculations for aerosol formation caused without the involvement of sulphuric acid and solely through extremely low volatile substances of biological origin (Gordon et al., PNAS). According to the findings, this process contributed significantly to particle formation above all in the pre-industrial atmosphere, since at that time far less sulphur components were released into the atmosphere. The number of particles in the pre-industrial atmosphere is now estimated to be far greater through the additional process than was shown in earlier calculations.

The model calculations, which are based on data from the CLOUD experiment, reveal that the cooling effects of clouds are 27 percent less than in climate simulations without this effect as a result of additional particles caused by human activity: Instead of a radiative effect of -0.82 W/m2 the outcome is only -0.60 W/m2.
E.M. Dunne, et al., 2016: Global particle formation from CERN CLOUD measurements, Science First Release, DOI: 10.1126/science.aaf2649

This article appeared online via First Release in Science on Thursday, 27th of October 2016. http://science.sciencemag.org/cgi/doi/10.1126/science.aaf2649
H. Gordon, et al., 2016: Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation, PNAS, 113 (43) 12053-12058; published ahead of print on the 10th of October 2016, DOI:10.1073/pnas.1602360113
http://www.pnas.org/content/113/43/12053.abstract

A photograph can be downloaded from: http://www.muk.uni-frankfurt.de/63775996
Further information: Prof. Dr. Joachim Curtius, Institute of Atmospheric and Environmental Sciences, Riedberg Campus, Tel.: ++49(0)798-40258, curtius@iau.uni-frankfurt.de

Dr. Anne Hardy | idw - Informationsdienst Wissenschaft

More articles from Ecology, The Environment and Conservation:

nachricht Scientists team up on study to save endangered African penguins
16.11.2017 | Florida Atlantic University

nachricht Climate change: Urban trees are growing faster worldwide
13.11.2017 | Technische Universität München

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>