Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sluggish electrons caught in action

04.02.2016

By creating and using the first optical attosecond pulse, scientists from the Laboratory for Attosecond Physics measured the time it takes electrons inside atoms to respond to the electromagnetic forces of light.

In the race to establish ever-faster electronics, light could play an important role. For instance, using light pulses of a precisely controlled waveform, physicists aim to switch electric currents in electronics circuits with light frequencies.


Optical attosecond flashes capture the motion of sluggish electrons.

Graphic: Christian Hackenberger

But will electrons in such circuits follow light oscillations instantaneously? How fast will electrons react to the push of a “light-based” button? Or, from a more fundamental perspective: how fast do electrons bound in atoms, molecules or solids respond to light?

Now, an international collaboration of physicists led by Dr. Eleftherios Goulielmakis, head of the research group “Attoelectronics” at the Max Planck Institute of Quantum Optics, researchers from Texas A&M University, USA, and the Lomonosov Moscow State University, have been able to track the effect of this delay for the first time. By creating the first optical attosecond pulse and using it to set electrons in krypton atoms in motion, they discovered that it takes as long as 100 attoseconds for electrons to respond to the electromagnetic forces of light. (Nature, 4 February 2016, DOI: 10.1038/nature16528)

Even for electrons, the lightest particles residing outside the atomic nucleus, quantum mechanics predicts that when exposed to light, a tiny but finite time interval to respond to the forces of light is necessary. But this time interval is predicted to be extremely brief – in the order of tens to hundreds of attoseconds, with one attosecond being one billionth of a billionth of a second. Owing to its brevity, such a phenomenon was considered by scientists immeasurably fast for many decades.

“A prerequisite for capturing such a brief event is a light flash which can pull electrons – or to use the scientific term, polarize them – extremely quickly, and thus probe their response,” said Dr. Mohammed Hassan, a researcher in the group of Dr. Goulielmakis.

With a light-field synthesizer, a device which can manipulate the properties of visible light and nearby infrared and ultraviolet frequencies, the scientists were able to compose visible light pulses as short as 380 attoseconds. These light pulses are so short that they entailed barely more than a half-oscillation of a light field in their time profile. This makes them the fastest pulses of visible light ever created. “We can now not only manipulate visible light with attosecond precision, but also confine its waves into attosecond time intervals,” said Dr. Tran Trung Luu, a researcher in the Attoelectronics group.

With this novel tool at hand, the researchers flashed krypton atoms with optical attosecond pulses. They performed several experiments, each time with a pulse that would apply a slightly different force to the electrons. To check how the electrons responded, they measured the ultraviolet radiation of the wiggling electrons in a vacuum. From the measurements, they were able to deduce that electrons would need some 100 attoseconds to react to the force of light.

“Our study closes a several-decades-long inquiry into the fundamental dynamic response of matter to light fields. From the rotation and the nuclear motion in molecules captured in the last decades with femtosecond technology, we are now able for the first time to track in real time the response of electrons bound in atoms,” Dr. Goulielmakis pointed out. “But at the same time, it opens up a new era of probing and manipulating matter on the electronic level,” he added.

As one of the next steps, Dr. Goulielmakis and his team plan to extend the studies of electron dynamics in solid materials. “Tracing and controlling electrons in solids will enable us to identify the most promising routes for novel ultrafast electronics and photonics operating on sub-fs time scales and at Petahertz clocking rates,” Goulielmakis said.
Olivia Meyer-Streng

Original publication:
M. Th. Hassan, T. T. Luu, A. Moulet, O. Raskazovskaya, P. Zhokhov, M. Garg, N. Karpowicz, A. M. Zheltikov, V. Pervak, F. Krausz, and E. Goulielmakis
Optical attosecond pulses and tracking the nonlinear response of bound electrons
Nature, 4 February 2016, DOI: 10.1038/nature16528

Contact:
Dr. Eleftherios Goulielmakis
ERC Research Group Attoelectronics
Max-Planck-Institute of Quantum Optics
Laboratory for Attosecond Physics
Hans-Kopfermann-Str. 1, 85748 Garching, Germany
Phone: +49(0)89 / 32 905 -632 /Fax: -200
E-mail: Eleftherios.Goulielmakis@mpq.mpg.de
www.attoworld.de/goulielmakis-group
Dr. Olivia Meyer-Streng
Press & Public Relations
Max Planck Institute of Quantum Optics, Garching, Germany
Phone: +49 (0)89 / 32 905 -213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Further information:
http://www.mpq.mpg.de/

More articles from Ecology, The Environment and Conservation:

nachricht When corals eat plastics
24.05.2018 | Justus-Liebig-Universität Gießen

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>