Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sluggish electrons caught in action

04.02.2016

By creating and using the first optical attosecond pulse, scientists from the Laboratory for Attosecond Physics measured the time it takes electrons inside atoms to respond to the electromagnetic forces of light.

In the race to establish ever-faster electronics, light could play an important role. For instance, using light pulses of a precisely controlled waveform, physicists aim to switch electric currents in electronics circuits with light frequencies.


Optical attosecond flashes capture the motion of sluggish electrons.

Graphic: Christian Hackenberger

But will electrons in such circuits follow light oscillations instantaneously? How fast will electrons react to the push of a “light-based” button? Or, from a more fundamental perspective: how fast do electrons bound in atoms, molecules or solids respond to light?

Now, an international collaboration of physicists led by Dr. Eleftherios Goulielmakis, head of the research group “Attoelectronics” at the Max Planck Institute of Quantum Optics, researchers from Texas A&M University, USA, and the Lomonosov Moscow State University, have been able to track the effect of this delay for the first time. By creating the first optical attosecond pulse and using it to set electrons in krypton atoms in motion, they discovered that it takes as long as 100 attoseconds for electrons to respond to the electromagnetic forces of light. (Nature, 4 February 2016, DOI: 10.1038/nature16528)

Even for electrons, the lightest particles residing outside the atomic nucleus, quantum mechanics predicts that when exposed to light, a tiny but finite time interval to respond to the forces of light is necessary. But this time interval is predicted to be extremely brief – in the order of tens to hundreds of attoseconds, with one attosecond being one billionth of a billionth of a second. Owing to its brevity, such a phenomenon was considered by scientists immeasurably fast for many decades.

“A prerequisite for capturing such a brief event is a light flash which can pull electrons – or to use the scientific term, polarize them – extremely quickly, and thus probe their response,” said Dr. Mohammed Hassan, a researcher in the group of Dr. Goulielmakis.

With a light-field synthesizer, a device which can manipulate the properties of visible light and nearby infrared and ultraviolet frequencies, the scientists were able to compose visible light pulses as short as 380 attoseconds. These light pulses are so short that they entailed barely more than a half-oscillation of a light field in their time profile. This makes them the fastest pulses of visible light ever created. “We can now not only manipulate visible light with attosecond precision, but also confine its waves into attosecond time intervals,” said Dr. Tran Trung Luu, a researcher in the Attoelectronics group.

With this novel tool at hand, the researchers flashed krypton atoms with optical attosecond pulses. They performed several experiments, each time with a pulse that would apply a slightly different force to the electrons. To check how the electrons responded, they measured the ultraviolet radiation of the wiggling electrons in a vacuum. From the measurements, they were able to deduce that electrons would need some 100 attoseconds to react to the force of light.

“Our study closes a several-decades-long inquiry into the fundamental dynamic response of matter to light fields. From the rotation and the nuclear motion in molecules captured in the last decades with femtosecond technology, we are now able for the first time to track in real time the response of electrons bound in atoms,” Dr. Goulielmakis pointed out. “But at the same time, it opens up a new era of probing and manipulating matter on the electronic level,” he added.

As one of the next steps, Dr. Goulielmakis and his team plan to extend the studies of electron dynamics in solid materials. “Tracing and controlling electrons in solids will enable us to identify the most promising routes for novel ultrafast electronics and photonics operating on sub-fs time scales and at Petahertz clocking rates,” Goulielmakis said.
Olivia Meyer-Streng

Original publication:
M. Th. Hassan, T. T. Luu, A. Moulet, O. Raskazovskaya, P. Zhokhov, M. Garg, N. Karpowicz, A. M. Zheltikov, V. Pervak, F. Krausz, and E. Goulielmakis
Optical attosecond pulses and tracking the nonlinear response of bound electrons
Nature, 4 February 2016, DOI: 10.1038/nature16528

Contact:
Dr. Eleftherios Goulielmakis
ERC Research Group Attoelectronics
Max-Planck-Institute of Quantum Optics
Laboratory for Attosecond Physics
Hans-Kopfermann-Str. 1, 85748 Garching, Germany
Phone: +49(0)89 / 32 905 -632 /Fax: -200
E-mail: Eleftherios.Goulielmakis@mpq.mpg.de
www.attoworld.de/goulielmakis-group
Dr. Olivia Meyer-Streng
Press & Public Relations
Max Planck Institute of Quantum Optics, Garching, Germany
Phone: +49 (0)89 / 32 905 -213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Further information:
http://www.mpq.mpg.de/

More articles from Ecology, The Environment and Conservation:

nachricht Listening in: Acoustic monitoring devices detect illegal hunting and logging
14.12.2017 | Gesellschaft für Ökologie e.V.

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>