Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Simulation Model Provides Information on the Future of Reefs

30.04.2013
Across the globe, tropical coral reefs are exposed to a variety of stress factors – often working in concert – that affect them. How long can reefs resist and when is the critical “point of no return” after which a reef is irreversibly damaged?
To address this key question, ecologists of the Leibniz Center for Tropical Marine Ecology (ZMT) in Bremen developed a simulation model showing the development of a virtual reef under the influence of some of the most common perturbation factors – with surprising results!

Real-world reefs off the coast of Zanzibar with their most common coral and algae species were the basis for the simulation model. These coral reefs fringe large parts of the coast there and are popular diving areas for the growing tourism industry. However, the fragile reef ecosystems suffer significantly from human intervention. Anchors dropped from tourist boats cause great damage to the top of the reef. The local population meets the increasing demand for fresh fish with destructive fishing methods. Large trawl nets or even dynamite are often used for fishing. Coral material is often extracted as substitute for cement to build houses.
In the simulation model, the Bremen researchers can expose the virtual reefs to such perturbations and study how they develop under pressure over periods of many decades. “The simulation shall provide a basis for decisions in coastal management,” says Andreas Kubicek, who developed the model as part of his doctoral thesis. “You can select the perturbation factors and then see how some coral species die off and other species spread, or eventually how algae win the upper hand in the reef.” Extensive data on the growth, proliferation and interaction between the reef organisms, which were collected from reefs around the world, went into the development of the program.

The researchers tested their reef model on the basis of a special event. In 1998 the El Niño climate phenomenon struck with exceptional impact across the globe. Around Zanzibar the seawater temperature rose from an average of 27 °C to a high of 32 °C. As a consequence, many corals bleached and the coral cover declined in some reefs from 60 % to only 20 %. Colleagues of the Institute of Marine Sciences on Zanzibar, a research partner of the ZMT, documented the development of the reef over a period of ten years. “We allowed a correspondingly intensive coral bleaching to impact our virtual reef,” said Hauke Reuter of the Department of Ecological Modelling at the ZMT. “We then monitored the results. Remarkably, exactly the same processes played out in the simulated reef“.

In the simulation the researchers also observed that in an undisturbed reef the more resistant species such as massive corals prevail and that species diversity is lost in the long term. Studies on the Great Barrier Reef recently confirmed this. The modellers were particularly surprised, however, that a disturbed reef can make a notable recovery under favourable conditions – up to a certain point. “At present, coral bleaching takes place every 10 to 12 years,” Reuter added. “Researchers predict for the future, however, that due to climate change coral bleaching is expected to take place every 4 to 5 years. According to our model, no reef will be able to survive this.”

Here the ZMT presents a simplified version of the model for the general public. You can select the different perturbation factors yourself and observe how the reef develops: http://www.zmt-bremen.de/en/The_Reef_Model.html

Publication:
Kubicek, A., Muhando, C., Reuter, H. (2012) Simulations of long-term community dynamics in coral reef - How perturbations shape trajectories. PLOS Computational Biology, 8(11). DOI: 10.1371/journal.pcbi.1002791.

Further information:

Dr. Andreas Kubicek
Phone: +49(0)421 / 23800-158
andreas.kubicek@zmt-bremen.de

Dr. Hauke Reuter
Phone: +49(0)421 / 23800-58
hauke.reuter@zmt-bremen.de

Dr. Susanne Eickhoff | TROPOS
Further information:
http://www.zmt-bremen.de/en/The_Reef_Model.html

Further reports about: Marine science Mobile phone ZMT Zanzibar coral bleaching coral reef reef ecosystem

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>