Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Simulation Model Provides Information on the Future of Reefs

30.04.2013
Across the globe, tropical coral reefs are exposed to a variety of stress factors – often working in concert – that affect them. How long can reefs resist and when is the critical “point of no return” after which a reef is irreversibly damaged?
To address this key question, ecologists of the Leibniz Center for Tropical Marine Ecology (ZMT) in Bremen developed a simulation model showing the development of a virtual reef under the influence of some of the most common perturbation factors – with surprising results!

Real-world reefs off the coast of Zanzibar with their most common coral and algae species were the basis for the simulation model. These coral reefs fringe large parts of the coast there and are popular diving areas for the growing tourism industry. However, the fragile reef ecosystems suffer significantly from human intervention. Anchors dropped from tourist boats cause great damage to the top of the reef. The local population meets the increasing demand for fresh fish with destructive fishing methods. Large trawl nets or even dynamite are often used for fishing. Coral material is often extracted as substitute for cement to build houses.
In the simulation model, the Bremen researchers can expose the virtual reefs to such perturbations and study how they develop under pressure over periods of many decades. “The simulation shall provide a basis for decisions in coastal management,” says Andreas Kubicek, who developed the model as part of his doctoral thesis. “You can select the perturbation factors and then see how some coral species die off and other species spread, or eventually how algae win the upper hand in the reef.” Extensive data on the growth, proliferation and interaction between the reef organisms, which were collected from reefs around the world, went into the development of the program.

The researchers tested their reef model on the basis of a special event. In 1998 the El Niño climate phenomenon struck with exceptional impact across the globe. Around Zanzibar the seawater temperature rose from an average of 27 °C to a high of 32 °C. As a consequence, many corals bleached and the coral cover declined in some reefs from 60 % to only 20 %. Colleagues of the Institute of Marine Sciences on Zanzibar, a research partner of the ZMT, documented the development of the reef over a period of ten years. “We allowed a correspondingly intensive coral bleaching to impact our virtual reef,” said Hauke Reuter of the Department of Ecological Modelling at the ZMT. “We then monitored the results. Remarkably, exactly the same processes played out in the simulated reef“.

In the simulation the researchers also observed that in an undisturbed reef the more resistant species such as massive corals prevail and that species diversity is lost in the long term. Studies on the Great Barrier Reef recently confirmed this. The modellers were particularly surprised, however, that a disturbed reef can make a notable recovery under favourable conditions – up to a certain point. “At present, coral bleaching takes place every 10 to 12 years,” Reuter added. “Researchers predict for the future, however, that due to climate change coral bleaching is expected to take place every 4 to 5 years. According to our model, no reef will be able to survive this.”

Here the ZMT presents a simplified version of the model for the general public. You can select the different perturbation factors yourself and observe how the reef develops: http://www.zmt-bremen.de/en/The_Reef_Model.html

Publication:
Kubicek, A., Muhando, C., Reuter, H. (2012) Simulations of long-term community dynamics in coral reef - How perturbations shape trajectories. PLOS Computational Biology, 8(11). DOI: 10.1371/journal.pcbi.1002791.

Further information:

Dr. Andreas Kubicek
Phone: +49(0)421 / 23800-158
andreas.kubicek@zmt-bremen.de

Dr. Hauke Reuter
Phone: +49(0)421 / 23800-58
hauke.reuter@zmt-bremen.de

Dr. Susanne Eickhoff | TROPOS
Further information:
http://www.zmt-bremen.de/en/The_Reef_Model.html

Further reports about: Marine science Mobile phone ZMT Zanzibar coral bleaching coral reef reef ecosystem

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>