Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Simulation Model Provides Information on the Future of Reefs

30.04.2013
Across the globe, tropical coral reefs are exposed to a variety of stress factors – often working in concert – that affect them. How long can reefs resist and when is the critical “point of no return” after which a reef is irreversibly damaged?
To address this key question, ecologists of the Leibniz Center for Tropical Marine Ecology (ZMT) in Bremen developed a simulation model showing the development of a virtual reef under the influence of some of the most common perturbation factors – with surprising results!

Real-world reefs off the coast of Zanzibar with their most common coral and algae species were the basis for the simulation model. These coral reefs fringe large parts of the coast there and are popular diving areas for the growing tourism industry. However, the fragile reef ecosystems suffer significantly from human intervention. Anchors dropped from tourist boats cause great damage to the top of the reef. The local population meets the increasing demand for fresh fish with destructive fishing methods. Large trawl nets or even dynamite are often used for fishing. Coral material is often extracted as substitute for cement to build houses.
In the simulation model, the Bremen researchers can expose the virtual reefs to such perturbations and study how they develop under pressure over periods of many decades. “The simulation shall provide a basis for decisions in coastal management,” says Andreas Kubicek, who developed the model as part of his doctoral thesis. “You can select the perturbation factors and then see how some coral species die off and other species spread, or eventually how algae win the upper hand in the reef.” Extensive data on the growth, proliferation and interaction between the reef organisms, which were collected from reefs around the world, went into the development of the program.

The researchers tested their reef model on the basis of a special event. In 1998 the El Niño climate phenomenon struck with exceptional impact across the globe. Around Zanzibar the seawater temperature rose from an average of 27 °C to a high of 32 °C. As a consequence, many corals bleached and the coral cover declined in some reefs from 60 % to only 20 %. Colleagues of the Institute of Marine Sciences on Zanzibar, a research partner of the ZMT, documented the development of the reef over a period of ten years. “We allowed a correspondingly intensive coral bleaching to impact our virtual reef,” said Hauke Reuter of the Department of Ecological Modelling at the ZMT. “We then monitored the results. Remarkably, exactly the same processes played out in the simulated reef“.

In the simulation the researchers also observed that in an undisturbed reef the more resistant species such as massive corals prevail and that species diversity is lost in the long term. Studies on the Great Barrier Reef recently confirmed this. The modellers were particularly surprised, however, that a disturbed reef can make a notable recovery under favourable conditions – up to a certain point. “At present, coral bleaching takes place every 10 to 12 years,” Reuter added. “Researchers predict for the future, however, that due to climate change coral bleaching is expected to take place every 4 to 5 years. According to our model, no reef will be able to survive this.”

Here the ZMT presents a simplified version of the model for the general public. You can select the different perturbation factors yourself and observe how the reef develops: http://www.zmt-bremen.de/en/The_Reef_Model.html

Publication:
Kubicek, A., Muhando, C., Reuter, H. (2012) Simulations of long-term community dynamics in coral reef - How perturbations shape trajectories. PLOS Computational Biology, 8(11). DOI: 10.1371/journal.pcbi.1002791.

Further information:

Dr. Andreas Kubicek
Phone: +49(0)421 / 23800-158
andreas.kubicek@zmt-bremen.de

Dr. Hauke Reuter
Phone: +49(0)421 / 23800-58
hauke.reuter@zmt-bremen.de

Dr. Susanne Eickhoff | TROPOS
Further information:
http://www.zmt-bremen.de/en/The_Reef_Model.html

Further reports about: Marine science Mobile phone ZMT Zanzibar coral bleaching coral reef reef ecosystem

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>