Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seabird SOS

01.09.2015

A new study inspired by a working group at NCEAS estimates that almost all seabirds have eaten plastic

Plastic debris in the ocean has been an environmental issue for almost half a century. Now, for the first time, scientists can predict the global impact of plastics on avian marine species -- and it isn't pretty.


On Christmas Island in the Indian Ocean a red-footed booby stands amid plastic debris.

Credit: Britta Denise Hardesty

A study published today in the Proceedings of the National Academy of Sciences estimates that 90 percent of individual seabirds alive today have consumed some form of plastic. "This is a huge amount and really points to the ubiquity of plastic pollution," said lead author Chris Wilcox, a senior research scientist at Australia's Commonwealth Scientific and Industrial Research Organisation (CSIRO) Oceans and Atmosphere Flagship.

Wilcox also contributed to a study published earlier this year that found more than 4.8 million metric tons of plastic waste enters the oceans from land each year. Both studies were conducted by the same working group at UC Santa Barbara's National Center for Ecological Analysis and Synthesis (NCEAS) and supported by Washington, D.C.-based Ocean Conservancy.

"We've known for some time that the magnitude of plastic pollution is daunting," said NCEAS Director Frank Davis. "This study is important in revealing the pervasive impact of that plastic on seabirds."

The researchers found that nearly 60 percent of all seabird species, including albatrosses, shearwaters and penguins, have plastic in their guts. According to co-author Denise Hardesty, who was also a member of the NCEAS working group, seabirds are excellent indicators of ecosystem health. "Finding such widespread estimates of plastic in seabirds is borne out by some of the fieldwork we've carried out where I've found nearly 200 pieces of plastic in a single seabird," she said.

The investigators' analysis of studies published since the early 1960s showed that plastic is increasingly common in seabirds' stomachs. In 1960, plastic was found in the stomachs of less than 5 percent of seabirds; by 2010 that figure had risen to 80 percent. Based on current trends, the scientists predict that plastic ingestion will affect 99 percent of the world's seabird species by 2050.

The plethora of plastic comes from bags, bottle caps and plastic fibers from synthetic clothes that have washed out into the ocean from urban rivers, sewers and waste deposits. Birds mistake the brightly colored items for food or swallow them by accident, causing gut impaction, weight loss and sometimes death.

According to the study, plastics will have the greatest impact on wildlife that gather in the Southern Ocean in a band around the southern edges of Australia, South Africa and South America. These areas are home to widely diverse species. While the infamous garbage patches in the middle of the oceans have higher densities of plastic, fewer birds live in these regions so the impact is reduced.

Hardesty, who works with Wilcox at CSIRO Oceans and Atmosphere, noted that the opportunity still exists to change the impact plastic has on seabirds. "Improving waste management can reduce the threat plastic is posing to marine wildlife," she said.

"Even simple measures can make a difference," Hardesty added. "Efforts to reduce plastics dumped into the environment in Europe resulted in measureable changes in plastic in seabird stomachs in less than a decade. This suggests that improvements in basic waste management can reduce plastic in the environment in a really short time."

###

The work was carried out as part of a national marine debris project supported by CSIRO and Shell's social investment program as well as the marine debris working group at UCSB's NCEAS. Erik van Sebille of the Grantham Institute at Imperial College London was also a co-author.

Media Contact

Julie Cohen
julie.cohen@ucsb.edu
805-893-7220

 @ucsantabarbara

http://www.ucsb.edu 

Julie Cohen | EurekAlert!

Further reports about: Ocean SOS Seabird plastic plastic pollution seabird species seabirds species waste management

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>