Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seabird SOS

01.09.2015

A new study inspired by a working group at NCEAS estimates that almost all seabirds have eaten plastic

Plastic debris in the ocean has been an environmental issue for almost half a century. Now, for the first time, scientists can predict the global impact of plastics on avian marine species -- and it isn't pretty.


On Christmas Island in the Indian Ocean a red-footed booby stands amid plastic debris.

Credit: Britta Denise Hardesty

A study published today in the Proceedings of the National Academy of Sciences estimates that 90 percent of individual seabirds alive today have consumed some form of plastic. "This is a huge amount and really points to the ubiquity of plastic pollution," said lead author Chris Wilcox, a senior research scientist at Australia's Commonwealth Scientific and Industrial Research Organisation (CSIRO) Oceans and Atmosphere Flagship.

Wilcox also contributed to a study published earlier this year that found more than 4.8 million metric tons of plastic waste enters the oceans from land each year. Both studies were conducted by the same working group at UC Santa Barbara's National Center for Ecological Analysis and Synthesis (NCEAS) and supported by Washington, D.C.-based Ocean Conservancy.

"We've known for some time that the magnitude of plastic pollution is daunting," said NCEAS Director Frank Davis. "This study is important in revealing the pervasive impact of that plastic on seabirds."

The researchers found that nearly 60 percent of all seabird species, including albatrosses, shearwaters and penguins, have plastic in their guts. According to co-author Denise Hardesty, who was also a member of the NCEAS working group, seabirds are excellent indicators of ecosystem health. "Finding such widespread estimates of plastic in seabirds is borne out by some of the fieldwork we've carried out where I've found nearly 200 pieces of plastic in a single seabird," she said.

The investigators' analysis of studies published since the early 1960s showed that plastic is increasingly common in seabirds' stomachs. In 1960, plastic was found in the stomachs of less than 5 percent of seabirds; by 2010 that figure had risen to 80 percent. Based on current trends, the scientists predict that plastic ingestion will affect 99 percent of the world's seabird species by 2050.

The plethora of plastic comes from bags, bottle caps and plastic fibers from synthetic clothes that have washed out into the ocean from urban rivers, sewers and waste deposits. Birds mistake the brightly colored items for food or swallow them by accident, causing gut impaction, weight loss and sometimes death.

According to the study, plastics will have the greatest impact on wildlife that gather in the Southern Ocean in a band around the southern edges of Australia, South Africa and South America. These areas are home to widely diverse species. While the infamous garbage patches in the middle of the oceans have higher densities of plastic, fewer birds live in these regions so the impact is reduced.

Hardesty, who works with Wilcox at CSIRO Oceans and Atmosphere, noted that the opportunity still exists to change the impact plastic has on seabirds. "Improving waste management can reduce the threat plastic is posing to marine wildlife," she said.

"Even simple measures can make a difference," Hardesty added. "Efforts to reduce plastics dumped into the environment in Europe resulted in measureable changes in plastic in seabird stomachs in less than a decade. This suggests that improvements in basic waste management can reduce plastic in the environment in a really short time."

###

The work was carried out as part of a national marine debris project supported by CSIRO and Shell's social investment program as well as the marine debris working group at UCSB's NCEAS. Erik van Sebille of the Grantham Institute at Imperial College London was also a co-author.

Media Contact

Julie Cohen
julie.cohen@ucsb.edu
805-893-7220

 @ucsantabarbara

http://www.ucsb.edu 

Julie Cohen | EurekAlert!

Further reports about: Ocean SOS Seabird plastic plastic pollution seabird species seabirds species waste management

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>