Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Saving coral reefs depends more on protecting fish than safeguarding locations

03.09.2015

Reefs containing more than 600 kilograms per hectare of fish biomass should be conservation priorities

A new study by WCS (Wildlife Conservation Society) has found that coral reef diversity 'hotspots' in the southwestern Indian Ocean rely more on the biomass of fish than where they are located, a conclusion that has major implications for management decisions to protect coral reef ecosystems.


A humphead wrasse off the coast of East Africa is shown. A new study by WCS has found fish biomass to be of greater importance than geographical location and other factors in determining the species richness of coral reef systems.

Credit: Tim McClanahan/WCS

Using data gathered over a 12-year period from nearly 270 coral reefs across the southwestern Indian Ocean, the WCS study found that the highest conservation priorities in the region should be reef systems where fish biomass exceeds 600 kilograms per hectare. This finding conflicts with a common conservation and management policy that emphasizes the geographical location and physical factors that are often associated with reef diversity.

The study--authored by Dr. Tim McClanahan of WCS (Wildlife Conservation Society)--appears in the latest edition of the Journal of Biogeography.

Click here for a link to the study: http://onlinelibrary.wiley.com/doi/10.1111/jbi.12604/abstract

"While geography has often been the main factor that conservation policy has used to establish protected areas, this study shows that protecting fish biomass should be the priority and this can be done with improved fisheries management," said McClanahan, a Senior Conservationist for WCS. "A hotspot is not a permanent feature and can be lost if the fish and the habitat are not protected."

Experts agree that fishing is a primary cause in the degradation of coral reefs, and needs to be better managed but what is more controversial is the various roles of protected areas or fisheries restrictions. Protecting regions containing threatened biodiversity--considered to largely be an attribute of geography-- has created a policy focus on the geographic hotspots. McClanahan found that the hotspot in the Indian Ocean is a real feature but is maintained more by fish biomass and habitat than by the geographic location. This means that fish biomass and habitat are the most influential factors and should be used to guide management decisions rather than location.

McClanahan's study of 266 sites in seven countries of the southwestern Indian Ocean measured numbers of fish species while simultaneously collecting information on the abundance of corals and algae, depth, geographical location, and the types of fisheries management. This allowed him to compare the importance of each of these factors.

The results support previous studies identifying the Mozambique Channel as a center of species richness in the southwestern Indian Ocean. However, sites in this region with low fish biomass also lacked full diversity, and being in this hotspot center alone did not ensure high diversity. Stronger correlations were found between biomass and local factors such as restrictions on fishing along with coral cover and water depth. The latitude and longitude were significant but found to contribute the least to the variation in numbers of species - a finding that challenges common conservation wisdom.

The study also reveals that protected areas that lacked regular and strong enforcement of fishing bans - classified as 'low compliance' fisheries closures - had nearly as low numbers of fish species as reefs that were regularly fished. The low compliance category included 50 of the 104 reefs included in the study. McClanahan added: "Having fishing restrictions is better than closing reefs to fishing if the closure rules are not followed, which was common and found for nearly half of the studied closures."

"The Southwest Indian Ocean is a globally important marine biodiversity hotspot. Unfortunately, this study shows that many protected areas are not doing a good job at protecting fish diversity, a shortcoming that threatens some of the world's most important coral reefs," said Dr. Caleb McClennen, Executive Director of the Marine Program. "While these ecosystems are complex, it is clear we need to do at a minimum two things very well to save the world's coral reefs: strictly enforce established marine protected areas, and; outside these areas, increase the sustainability of fishing practices to increase biomass."

###

The projects that lead to the compilation of the large data set were supported by the John D. and Catherine T. MacArthur Foundation, The Tiffany & Co. Foundation, and the Western Indian Ocean Marine Science Association (WIOMSA).

Media Contact

John Delaney
jdelaney@wcs.org
718-220-3275

 @TheWCS

http://www.wcs.org 

John Delaney | EurekAlert!

Further reports about: Wildlife Conservation coral reefs protected areas

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>