Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Saving coral reefs depends more on protecting fish than safeguarding locations


Reefs containing more than 600 kilograms per hectare of fish biomass should be conservation priorities

A new study by WCS (Wildlife Conservation Society) has found that coral reef diversity 'hotspots' in the southwestern Indian Ocean rely more on the biomass of fish than where they are located, a conclusion that has major implications for management decisions to protect coral reef ecosystems.

A humphead wrasse off the coast of East Africa is shown. A new study by WCS has found fish biomass to be of greater importance than geographical location and other factors in determining the species richness of coral reef systems.

Credit: Tim McClanahan/WCS

Using data gathered over a 12-year period from nearly 270 coral reefs across the southwestern Indian Ocean, the WCS study found that the highest conservation priorities in the region should be reef systems where fish biomass exceeds 600 kilograms per hectare. This finding conflicts with a common conservation and management policy that emphasizes the geographical location and physical factors that are often associated with reef diversity.

The study--authored by Dr. Tim McClanahan of WCS (Wildlife Conservation Society)--appears in the latest edition of the Journal of Biogeography.

Click here for a link to the study:

"While geography has often been the main factor that conservation policy has used to establish protected areas, this study shows that protecting fish biomass should be the priority and this can be done with improved fisheries management," said McClanahan, a Senior Conservationist for WCS. "A hotspot is not a permanent feature and can be lost if the fish and the habitat are not protected."

Experts agree that fishing is a primary cause in the degradation of coral reefs, and needs to be better managed but what is more controversial is the various roles of protected areas or fisheries restrictions. Protecting regions containing threatened biodiversity--considered to largely be an attribute of geography-- has created a policy focus on the geographic hotspots. McClanahan found that the hotspot in the Indian Ocean is a real feature but is maintained more by fish biomass and habitat than by the geographic location. This means that fish biomass and habitat are the most influential factors and should be used to guide management decisions rather than location.

McClanahan's study of 266 sites in seven countries of the southwestern Indian Ocean measured numbers of fish species while simultaneously collecting information on the abundance of corals and algae, depth, geographical location, and the types of fisheries management. This allowed him to compare the importance of each of these factors.

The results support previous studies identifying the Mozambique Channel as a center of species richness in the southwestern Indian Ocean. However, sites in this region with low fish biomass also lacked full diversity, and being in this hotspot center alone did not ensure high diversity. Stronger correlations were found between biomass and local factors such as restrictions on fishing along with coral cover and water depth. The latitude and longitude were significant but found to contribute the least to the variation in numbers of species - a finding that challenges common conservation wisdom.

The study also reveals that protected areas that lacked regular and strong enforcement of fishing bans - classified as 'low compliance' fisheries closures - had nearly as low numbers of fish species as reefs that were regularly fished. The low compliance category included 50 of the 104 reefs included in the study. McClanahan added: "Having fishing restrictions is better than closing reefs to fishing if the closure rules are not followed, which was common and found for nearly half of the studied closures."

"The Southwest Indian Ocean is a globally important marine biodiversity hotspot. Unfortunately, this study shows that many protected areas are not doing a good job at protecting fish diversity, a shortcoming that threatens some of the world's most important coral reefs," said Dr. Caleb McClennen, Executive Director of the Marine Program. "While these ecosystems are complex, it is clear we need to do at a minimum two things very well to save the world's coral reefs: strictly enforce established marine protected areas, and; outside these areas, increase the sustainability of fishing practices to increase biomass."


The projects that lead to the compilation of the large data set were supported by the John D. and Catherine T. MacArthur Foundation, The Tiffany & Co. Foundation, and the Western Indian Ocean Marine Science Association (WIOMSA).

Media Contact

John Delaney


John Delaney | EurekAlert!

Further reports about: Wildlife Conservation coral reefs protected areas

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>