Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Introduce Macrosystems Approach to Study Stream Ecology

26.01.2015

Kansas State University scientists and collaborators have developed a new method for studying a variety of streams — including tropical, prairie or forested streams — across continents.


Walter Dodds, Kansas State University distinguished professor of biology, is leading a research team in creating the Stream Biome Gradient Concept, which is a way to compare streams in different climates and different continents.

Kansas State University

Walter Dodds, university distinguished professor of biology, has led the researchers in creating the Stream Biome Gradient Concept, which is a way to compare streams in different climates and different continents. The concept can improve how researchers study streams worldwide.

"This model will help us understand how to regulate and conserve streams and protect water quality," Dodds said. "It's important to think in broad terms and in the context that people, plants and animals interact with streams. Understanding biodiversity is crucial."

The researchers have introduced the Stream Biome Gradient Concept in the Freshwater Science article "The Stream Biome Gradient Concept: factors controlling lotic systems across broad biogeographic scales."

Other Kansas State University researchers involved include Keith Gido, professor of biology, and Bartosz Grudzinski, visiting assistant professor of geography. Other researchers include Melinda Daniels, an adjunct professor of geography at Kansas State University and associate research scientist at the Stroud Water Research Center in Pennsylvania; and Matt Whiles, professor of zoology at Southern Illinois University.

All of the researchers have studied grassland streams, which share characteristics with other desert and forested streams. They developed the Stream Biome Gradient Concept to take a macrosystems ecology approach, which involves viewing systems on a continental or national scale.

"This concept is important because most previous research has involved temperate, forested streams," Dodds said. "We don't know exactly how that applies to streams in other areas, such as tropical, desert, prairie or tundra streams."

The Stream Biome Gradient Concept can help develop hypotheses to test at STREON sites. STREON — or STReam Experimental Observatory Network — is a 10-year experiment at 10 different aquatic stream sites in a variety of ecosystems. STREON is part of the National Science Foundation-funded National Ecological Observatory Network, or NEON.

"We're hopeful that this work will help people develop a broader and more comprehensive view of the way that stream ecosystems function," Dodds said. "Stream research is getting more mature and focused on large-scale questions. It's a natural progression to think in the largest possible terms and link our conceptual research to a scale where people interact with aquatic habitats."

The researchers received funding support from the National Science Foundation, the Konza Long-Term Ecological Research program and the International Grasslands Center.

Read more at http://www.k-state.edu/media/newsreleases/jan15/dodds12115.html

Contact Information
Walter Dodds
785-532-6998
wkdodds@k-state.edu

Walter Dodds | newswise

Further reports about: across desert ecology ecosystems forested streams tropical

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>