Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover how soils control atmospheric hydrogen

04.03.2014

Researchers at New Zealand's University of Otago are helping to clear up an enduring mystery regarding the composition of the Earth's atmosphere. They have discovered the microbial soil processes that help ensure that the explosive gas hydrogen remains at trace levels.

In recent decades it was found that around four-fifths of all hydrogen released into the air is rapidly removed through soil activity, but exactly what is recycling it, and how, has remained unclear.

Now, Otago scientists have shown that the soil bacterium Mycobacterium smegmatis uses two special enzymes that can efficiently scavenge hydrogen as fuel at very low concentrations. They also found the bacterium ramps up these enzymes' activity when starved of its usual carbon-based energy sources.

The Department of Microbiology & Immunology researchers' findings appear in the prestigious journal Proceedings of the National Academy of Sciences (PNAS). Their discovery has implications for improved understanding of global climate processes and for developing new catalysts for hydrogen fuel cells.

Study lead author and Otago PhD candidate Chris Greening says the findings emerge from a project led by Professor Greg Cook investigating why the mycobacteria family, which includes members causing TB and leprosy, have genes encoding hydrogenase enzymes. Hydrogenases are well-known for their roles in anaerobic bacteria, but this is the first comprehensive study of these enzymes in an organism that requires oxygen to combust their fuel sources.

"Hydrogen scavenging is just one example of the ingenuity of microorganisms. Bacterial metabolism is much more flexible than that of humans. While we rely on carbon sources such as sugars and amino acids, many bacteria can use gases (e.g. hydrogen, carbon monoxide) and even metals (e.g. iron, uranium) as fuel sources for growth and survival," says Mr Greening.

It now appears that M. smegmatis and several other species of soil actinobacteria are demonstrating a metabolic flexibility that would provide a powerful advantage over other aerobic microbes in soil ecosystems, he says.

"High-affinity hydrogenases allow these bacteria to harness hydrogen to survive on when their standard carbon-based fuel sources are absent. While hydrogen is at low concentrations in the air, it is essentially a constant and unlimited resource. This means that bacteria scavenging this highly dependable fuel source would be especially competitive against other organisms in their volatile environments."

On a global scale, this activity leads to soil actinobacteria serving as the main sink for atmospheric hydrogen. This in turn influences the concentrations of other gases in the atmosphere, including potent greenhouse gases such as methane and nitrous oxide, he says.

Mr Greening says that hydrogenases have additionally attracted interest from researchers working to make dependable, inexpensive hydrogen fuel cells a reality. "Developing a catalyst that mimics the high-affinity, oxygen-tolerant action of the hydrogenases in M. smegmatis would provide an enormous boost for this technology," he says.

Originally from the UK, Mr Greening joined Professor Cook's laboratory in November 2010 after completing a Bachelor's and Master's degree in Biochemistry at the University of Oxford. He will shortly complete his doctoral studies at Otago to take up a position researching drug targets for TB at CSIRO, Australia's national science agency.

"I decided to come here to do my PhD under Professor Cook after attending a research presentation he gave at Oxford." Having been awarded a first class degree at Oxford, Mr Greening pretty much had the choice of any world-leading institution to continue his studies. However, he says "Greg's multifaceted science captured my imagination so strongly that I set my sights on Otago."

###

The team's project was supported by a Marsden Fund Grant awarded to Professor Cook and study co-author Dr Michael Berney. The other co-authors include Kiel Hards, who studied the hydrogenases during his BSc Honours year, and Professor Dr Ralf Conrad, director of the Max-Planck Institute for Terrestrial Microbiology in Marburg, Germany.

Chris Greening | EurekAlert!

Further reports about: Greening actinobacteria activity bacteria bacterium concentrations enzymes gases soils

More articles from Ecology, The Environment and Conservation:

nachricht How to detect water contamination in situ?
22.09.2016 | Tomsk Polytechnic University (TPU)

nachricht Quantifying the chemical effects of air pollutants on oxidative stress and human health
12.09.2016 | Max-Planck-Institut für Chemie

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Stronger turbine blades with molybdenum silicides

26.09.2016 | Materials Sciences

Scientists Find Twisting 3-D Raceway for Electrons in Nanoscale Crystal Slices

26.09.2016 | Materials Sciences

Lowering the Heat Makes New Materials Possible While Saving Energy

26.09.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>