Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prospects for water reservoirs

17.08.2015

New Water Research Network CHARM by the Universities of Stuttgart, Freiburg and Constance

Water, the basis of life, is becoming increasingly scarce; many ecological, economic and socio-political challenges and conflicts are increasingly linked to water. With a sum of around six million Euros in the next five years, the Research Ministry is strengthening the scientific cooperation between various specialist disciplines in the field of water research in Baden-Württemberg.


Sediment deposits block the inflows and outflows of reservoirs, reduce the storage capacity and release dangerous gases when they are dissolved.

University of Stuttgart

One of the three projects selected by an international advisory committee is the network CHARM (Challenges of Reservoir Management) at the University of Stuttgart that dedicates itself to the management of water reservoirs taking into account ecological and social aspects and receives around two million Euros. The universities of Freiburg and Constance are also involved along with the University of Stuttgart.

CHARM explores five large challenges that result from operating and managing water reservoirs: the deposit of sediments, the formation of microbial films, the growth and spread of blue-green algae, methane gas emissions as well as social conflicts. In so doing socio-economic and ecological problem fields are treated in order to guarantee a sustainable functionality of water reservoirs that make a very important contribution to water supply and energy generation.

“With the CHARM network we are beginning a cooperation, unknown in this constellation up to now, which ideally links the expertise of the three involved universities – sediment research in Stuttgart, algae and methane gas research in Constance and societal research in Freiburg“, emphasised the spokesperson of the new association, Prof. Silke Wieprecht from the Institute of Water and Environmental System Modelling at the University of Stuttgart.

The increasing occurrence of sediment deposits harbours the risk of organic (hazardous) substances also being able to accumulate, thus leading to blockages in the inflows and outflows in a reservoir. In addition the water capacity of the storage space on the whole is reduced through the deposits. In this way one percent of the worldwide storage capacity is currently lost each year – “that is more than will be added by new reservoirs that are currently under construction“, is how Prof. Wieprecht illustrated the problem. In CHARM algorithms for a dynamic modelling of erosion processes are developed that could serve as a basis for relevant management measures.

In addition microbial biofilms could promote the solidification of sediments and have a negative influence on the water quality. Therefore investigations are to be conducted in various experiments as to how abiotic factors, different temperature, light and flow ratios influence the composition and function of these microbial layers.

Risks through algal bloom and methane

Like many surface waters, reservoirs also suffer from the increased input of nutrients that can lead to a mass reproduction of blue-green algae (algal bloom) and with this to the quality of the water deteriorating. In order to develop relevant counter measures, the physical-chemical and biological processes that underlie such a mass development are investigated.

If accumulated sediments start moving again, blisters develop through which the climate poison methane is released. In order to evaluate the role of water reservoirs as a source of greenhouse gases (CO2, methane), spatial and temporal differentiated greenhouse gas measurements are carried out.

Last but not least reservoirs mean a great impact on the landscape that therefore occasionally brought about social resistance in the past. To avoid this in future, the public and pressure groups should be more involved. As a prerequisite for this the interests and the risk consciousness of these actors should be identified in CHARM.

Further information:
Prof. Silke Wieprecht., University of Stuttgart, Institute of Water and Environmental System Modelling, Chair for Hydraulic Engineering and Water Quantity Management Tel. +49 711 685-64461,
Email: wieprecht (at) iws.uni-stuttgart.de
Andrea Mayer-Grenu, University of Stuttgart, Department of University Communication, Tel. 0711/685-82176,
Email: andrea.mayer-grenu (at) hkom.uni-stuttgart.de

Andrea Mayer-Grenu | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-stuttgart.de/

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>