Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plump turtles swim better: First models of swimming animals

30.10.2014

Bigger is better, if you're a leatherback sea turtle.

For the first time, researchers at the University of Wisconsin-Madison, Florida Atlantic University (FAU), and the National Oceanic and Atmospheric Administration (NOAA) have measured the forces that act on a swimming animal and the energy the animal must expend to move through the water.


Scientists studied newborn leatherback sea turtles to create the first models of a swimming animal. Challenges to measuring forces like drag and thrust made this difficult before, but the research team overcame these, offering the opportunity for many more to benefit from their findings.

Credit: Photo courtesy of Jeanette Wyneken, Florida Atlantic University

A surprising finding: Longer, slender turtles are less efficient swimmers than more rotund turtles, which get better stroke for their buck.

By taking these measurements, the research team — led by UW-Madison's Warren Porter — built models of swimming turtles and, in doing so, have enabled others to "compute the energetics, behavior and distributions of a species anywhere on Earth now or in the future," says Porter, a professor of zoology. The findings are published today in the journal PLOS One.

As climate change shifts the habitable ranges of both land and sea animals, and as scientists and others try to reconstruct ancient habitats of long-ago species, the ability to assess and predict an animal's physical interactions with the environment is key. The researchers see their work as instrumental for everyone from land managers to paleoecologists, students and conservationists.

"If you've got mechanistic models, then whatever kind of scenarios you want to run for the environment, you can run these models and have a lot of confidence that they're giving you good numbers," says Porter, who previously developed a model for land animals.

But getting there wasn't easy.

Several labs have tried to model the movements of animals in water but "swimming animals are very, very difficult to measure experimentally," Porter says. "It's very difficult to get drag and thrust."

No one before had been able to measure the fluid dynamics of a swimming creature, or the energetics required to perform the work of moving through water. This allows scientists to measure critical aspects of biology, such as how much food an animal must eat to survive.

It was serendipity that connected Porter and the lead author of the study, Peter Dudley, a former graduate student in Porter's lab, to the scientists at FAU who would eventually help solve the problem.

Jeanette Wyneken, FAU professor of biological sciences, had developed methods to keep newborn leatherback sea turtles in the lab for study. She and her former students created a tether system that allows the turtles to swim freely while also staying safe; the turtles don't recognize barriers and can easily injure themselves in their enclosures.

Porter, Dudley and Todd Jones — Wyneken's former graduate student and now a NOAA physiologist — tethered the turtles to instruments that allowed them to measure the force they produced while swimming. They also measured the oxygen the turtles consumed (a direct measure of their metabolism) and the heat they exchanged with the environment. All the while, the scientists took video of the tiny turtles.

Then the team recreated a virtual environment with a swimming turtle, to see if they could predict how much energy the turtle was using. Dudley, whose background is in engineering, says Porter uses "on-the-ground" engineering tools in his lab.

They scaled this up to model the three-dimensional motion of swimming juvenile leatherback sea turtles , to find power and heat transfer rates during the larger animal's flipper strokes.

It was here, by playing with the parameters of their virtual reality turtles, that the researchers learned husky turtles were better swimmers than their leaner counterparts.

"That was a surprise and I thought it was a mistake when I originally did it," says Dudley, who eventually learned that the flippers of thinner turtles come closer together at the bottom of their stroke than those of larger turtles, causing them to lose power.

It is that question — how does body size interact with the physical environment to constrain evolutionary design — that lies at the crux of the study's findings.

"We can literally design animals now and ask how are they going to function, just like a car or a rocket ship," says Porter. He is currently engaged in a UW-Madison initiative called Climate Quest, a competition to solve climate-change problems, and is putting this expertise to use.

In his project, he is assessing the impact of climate change on milk production in dairy cows in order to "select for cows 50 or 100 years from now," to improve production both now and in the face of a different planet.

"Now that we have (models) for both marine and terrestrial environments, we can answer those types of questions and get back to the big mass extinctions and get some insights into how did animals live before and after those extinctions," Porter says. "Why were the animals that survived able to survive?"

The researchers collaborated with Riccardo Bonazza, a UW-Madison professor of engineering physics, to develop their swimming turtle models. And it was the art department, says Porter, that enabled them to create a virtual swimming turtle.

"When you're looking at a problem, the more different ways you can look at it, the more different perspectives you can get on it, the more ideas you can have on how to deal with it and ... on different directions you can go," says Porter.


The study was funded in part by the UW Foundation and a Disney Worldwide Conservation Fund grant.

CONTACT: Warren Porter, 608-262-1719, wpporter@wisc.edu; Peter Dudley, P.N.D.PhD@gmail.com

Warren Porter | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>