Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Non-Native Plants Widespread, Plenty of Space to Invade

21.01.2015

UMass Amherst researchers use new methods to survey native vs. non-native plants

A new study, the first comprehensive assessment of native vs. non-native plant distribution in the continental United States, finds non-native plant species are much more widespread than natives, a finding that lead author Bethany Bradley at the University of Massachusetts Amherst called “very surprising.”


UMass Amherst

The first comprehensive assessment of native vs. non-native plant distribution in the continental United States found native plants are strongly limited in their distributions compared to non-native plants like this oriental bittersweet dominating a hedgerow, probably because people aren’t moving them around as much.

“Ecologists typically think of invasive species as being introduced in one spot and gradually spreading out from there. But, we found that even species with only a handful of occurrences were distributed all across the U.S.,” she says. “The future may already be here.”

As she explains, one of the major challenges for figuring out how species ranges could shift with climate change is that “we do not have a good handle on the factors limiting species’ current distributions. For non-native, invasive species in particular, predicting invasion risk is difficult because those species that have recently arrived may not have yet spread into all the environments where they could get a toehold.”

The international team the biogeographer led explored the geographic distributions of over 13,000 plant species, comparing those that are native and non-native to the continental United States, to identify differences in their overall geography. The work, which appears in the current online issue of Global Ecology and Biogeography, is co-authored with Regan Early of the University of Exeter, U.K., and Cascade Sorte of the University of California, Irvine.

Their comparative analysis highlights the fact that native plants are strongly limited in their distributions compared to non-native plants, probably because they have a harder time dispersing into suitable climates. That is, people aren’t moving them around as much, Bradley says.

The authors believe that this pattern is a result of widespread human introduction of non-native and invasive plants. Regionally, the ornamental plant trade and other human activities like planting of seeds with weed contaminants help non-natives overcome dispersal barriers that limit the distribution of native species.

“One silver lining for biological conservation is that native species are not so strongly limited by climate as once assumed,” she adds. In other words, native species’ distributions aren’t defined by their climate tolerances. Instead, other, non-climate-related dispersal barriers or interactions with other species can prevent native species from moving into environments where they could otherwise exist.

“With this study, we’re showing that inability to disperse, not climate tolerance, is likely stopping some species from inhabiting a broader range. This could mean that many species predicted to go extinct with climate change could persist for longer than previously anticipated under novel climates.”

But, Bradley warns, “Dispersal barriers aren’t going away, so even if native species can survive a little longer with climate change, most are clearly not going to be able to shift into newly suitable climate without our help.”

The researchers analyzed the distributions of 13,575 plant species (9,402 native, 2,397 endemic, 1,021 alien and 755 invasive) across the U.S. For each species, they recorded the total number of grid cells (roughly county-sized) occupied, calculated potential range based on climatic conditions, and measured their latitudinal and longitudinal extents. They then used the number of occupied and potential grids to calculate occupancy of potential range (range infilling) for each.

Bradley says although non-native and invasive species are much more widespread than natives, they have “filled in” much less of their potential range. Native species on average occupied about 50 percent more of their potential range than non-native species. For managers dealing with invasive species, Bradley says, “watch out.”

She adds, “We’re likely to see more problems from invasive species ahead as they continue to expand locally into suitable environments.” As the paper title states, invasive plants have plenty more space to invade.

This research was initiated during a working group supported by the National Center for Ecological Analysis and Synthesis (NCEAS) and supported by the Department of Defense’s Strategic Environmental Research and Development Program.

Contact Information
Bethany Bradley
401-440-9660
bbradley@eco.umass.edu

Janet Lathrop
413-545-0444
jlathrop@admin.umass.edu

Bethany Bradley | newswise
Further information:
http://www.umass.edu/

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>