Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Non-Native Plants Widespread, Plenty of Space to Invade


UMass Amherst researchers use new methods to survey native vs. non-native plants

A new study, the first comprehensive assessment of native vs. non-native plant distribution in the continental United States, finds non-native plant species are much more widespread than natives, a finding that lead author Bethany Bradley at the University of Massachusetts Amherst called “very surprising.”

UMass Amherst

The first comprehensive assessment of native vs. non-native plant distribution in the continental United States found native plants are strongly limited in their distributions compared to non-native plants like this oriental bittersweet dominating a hedgerow, probably because people aren’t moving them around as much.

“Ecologists typically think of invasive species as being introduced in one spot and gradually spreading out from there. But, we found that even species with only a handful of occurrences were distributed all across the U.S.,” she says. “The future may already be here.”

As she explains, one of the major challenges for figuring out how species ranges could shift with climate change is that “we do not have a good handle on the factors limiting species’ current distributions. For non-native, invasive species in particular, predicting invasion risk is difficult because those species that have recently arrived may not have yet spread into all the environments where they could get a toehold.”

The international team the biogeographer led explored the geographic distributions of over 13,000 plant species, comparing those that are native and non-native to the continental United States, to identify differences in their overall geography. The work, which appears in the current online issue of Global Ecology and Biogeography, is co-authored with Regan Early of the University of Exeter, U.K., and Cascade Sorte of the University of California, Irvine.

Their comparative analysis highlights the fact that native plants are strongly limited in their distributions compared to non-native plants, probably because they have a harder time dispersing into suitable climates. That is, people aren’t moving them around as much, Bradley says.

The authors believe that this pattern is a result of widespread human introduction of non-native and invasive plants. Regionally, the ornamental plant trade and other human activities like planting of seeds with weed contaminants help non-natives overcome dispersal barriers that limit the distribution of native species.

“One silver lining for biological conservation is that native species are not so strongly limited by climate as once assumed,” she adds. In other words, native species’ distributions aren’t defined by their climate tolerances. Instead, other, non-climate-related dispersal barriers or interactions with other species can prevent native species from moving into environments where they could otherwise exist.

“With this study, we’re showing that inability to disperse, not climate tolerance, is likely stopping some species from inhabiting a broader range. This could mean that many species predicted to go extinct with climate change could persist for longer than previously anticipated under novel climates.”

But, Bradley warns, “Dispersal barriers aren’t going away, so even if native species can survive a little longer with climate change, most are clearly not going to be able to shift into newly suitable climate without our help.”

The researchers analyzed the distributions of 13,575 plant species (9,402 native, 2,397 endemic, 1,021 alien and 755 invasive) across the U.S. For each species, they recorded the total number of grid cells (roughly county-sized) occupied, calculated potential range based on climatic conditions, and measured their latitudinal and longitudinal extents. They then used the number of occupied and potential grids to calculate occupancy of potential range (range infilling) for each.

Bradley says although non-native and invasive species are much more widespread than natives, they have “filled in” much less of their potential range. Native species on average occupied about 50 percent more of their potential range than non-native species. For managers dealing with invasive species, Bradley says, “watch out.”

She adds, “We’re likely to see more problems from invasive species ahead as they continue to expand locally into suitable environments.” As the paper title states, invasive plants have plenty more space to invade.

This research was initiated during a working group supported by the National Center for Ecological Analysis and Synthesis (NCEAS) and supported by the Department of Defense’s Strategic Environmental Research and Development Program.

Contact Information
Bethany Bradley

Janet Lathrop

Bethany Bradley | newswise
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>