Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nitrogen Deposition Reduces Swiss Plant Diversity

08.04.2015

High human atmospheric nitrogen emissions lead to a reduction of plant diversity. Researchers at the University of Basel analyzed plots all over Switzerland and report that the plant diversity has decreased in landscapes with high nitrogen deposition. The journal Royal Society Open Science has published their results.

Nitrogen is an essential plant nutrient that used to be available only in limited amounts. Many ecosystems rich in plant species are adapted to low nitrogen availability. An increase in nitrogen availability often favors a few highly competitive species, resulting in a decrease of the overall plant diversity.


Emissions produced in agriculture are responsible for two thirds of the nitrogen deposition in Switzerland. Nitrogen oxides produces by burning of fossil fuels are responsible for the other third.

© University of Basel

The researchers compared six different measures of plant diversity on 381 randomly selected study plots in Switzerland. The plots were each one square kilometer in size and located between 260 and 3200 meters elevation. In all six measures, the researchers found a negative relation to atmospheric nitrogen emissions.

“Negative effects of nitrogen deposition on plant diversity were so far known from small-scale studies conducted mostly in areas of high conservation value”, says first author Tobias Roth. “We wanted to know whether these effects are also evident when looking at entire landscapes and different elevations”.

The weakest relation was found in the traditionally measured species richness, which measures the number of plant species per plot. The biologists found the strongest effect in the so-called phylogenetic diversity, a measure that compares DNA sequences. High nitrogen deposition thus leads to plant species being more strongly related to each other.

The study estimates the loss in phylogenetic plant diversity due to current human-induced nitrogen deposition at 19 percent. As a reference value, the researchers used an estimated historic nitrogen deposition without human influence.

Compared to the historic reference value, the loss in traditionally measured plant species richness was 5 percent. The researchers also compared the data to nitrogen deposition measures from 1880, during the industrialization in Europe. The loss in phylogenetic plant diversity in this case was still 11 percent.

Great diversity important for ecosystem functioning

Phylogenetic plant diversity is directly related to ecosystem functioning. Because the study found negative effects on phylogenetic plant diversity at the landscape scale, the researchers conclude that human nitrogen emissions could ultimately threaten the functioning of whole ecosystems.

“High plant diversity is important to us humans for many reasons”, says Valentin Amrhein, co-senior author. “For example, in the mountains, a larger number of plant species with different root depths will stabilize the soil more effectively and prevent erosion”.

The 381 plots were investigated as part of the program “Biodiversity Monitoring Switzerland”, a program conducted on behalf of the Federal Office for the Environment. According to the Federal Commission for Air Hygiene, emissions produced in agriculture are responsible for two thirds of the nitrogen deposition in Switzerland. Nitrogen oxides produces by burning of fossil fuels are responsible for the other third.

Original source
Tobias Roth, Lukas Kohli, Beat Rihm, Valentin Amrhein and Beat Achermann
Nitrogen deposition and multi-dimensional plant diversity at the landscape scale
Royal Society Open Science xxxxxxxxxxxxx doi:

Further information
Dr. Tobias Roth, Hintermann & Weber AG, CH-4153 Reinach, phone +41 (0)61 717 88 62, email roth@hintermannweber.ch
PD Dr. Valentin Amrhein, University of Basel, Department of Environmental Sciences, Zoology, phone +41 (0)79 848 99 33, email v.amrhein@unibas.ch
Beat Achermann, Bundesamt für Umwelt BAFU, Abteilung Luftreinhaltung und Chemikalien, CH-3003 Bern, phone +41 (0)58 462 99 78, email: beat.achermann@bafu.admin.ch

Weitere Informationen:

https://www.unibas.ch/en/News-Events/News/Uni-Research/Nitrogen-Deposition-Reduc...

Olivia Poisson | Universität Basel

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>