Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique improves forecasts for Canada's prized salmon fishery

03.03.2015

Method based on field data performs better than traditional management forecast tools

A powerful method for analyzing and predicting nature's dynamic and interconnected systems is now providing new forecasting and management tools for Canada's premier fishery.

In a paper published in the Proceedings of the National Academy of Sciences, Scripps graduate student Hao Ye, Scripps Professor George Sugihara, and fisheries coauthors in Canada describe how the technique, called empirical dynamic modeling, or EDM, improved forecasting for Fraser River sockeye salmon, a highly prized fishery in British Columbia.

Developed at Scripps Institution of Oceanography at UC San Diego by Sugihara, the McQuown Chair Distinguished Professor of Natural Science, the new technique uses archives of field data to drive predictions of future performance.

Salmon populations in this fishery can exhibit dramatic and seemingly unpredictable changes in annual recruitment (also known as the "returns" in counting fish populations). In one example, salmon numbered only 1.4 million in 2009 but then boomed to 28.3 million in 2010. The researchers applied EDM methods in advance of the 2014 recruitment for Late Shuswap, a dominant recruitment location in 2014, and outperformed traditional forecasts with a smaller error margin. The EDM technique predicted returns of between 4.5 million and 9.1 million fish, while the official forecast indicated a much broader range of 6.9 million to 20 million. The actual tally has been listed at (approximately) 8.8 million fish.

"My colleagues and I are optimistic that our new approach will be adopted into the official forecasts, after undergoing careful review by the policymakers," said Ye.

"Fisheries and Oceans Canada welcomes opportunities to examine alternative approaches which might improve the forecast of salmon returns in B.C.," said study coauthor Sue Grant of Fisheries and Oceans Canada.

Sugihara says EDM advances ecosystem forecasting because it uses real-world field data, along with an intricate backbone of mathematical modeling that can account for the complicated interactions of variables and components in an ecosystem. Traditional scientific equations make assumptions about ecosystem processes, he says, and such assumptions can quickly lead to erroneous results.

"Despite what we are learning about the complexity of marine ecosystems, ecosystem models with specified equations assume we understand how natural ecosystems work, and their failure at real prediction shows that we do not," said Sugihara. "Our paper provides a simple alternative: equation-free mathematical modeling. This approach allows the data to speak for itself, instead of shoe-horning ill-fitting data into preconceived equations. The bottom line is that the EDM approach forecasts accurately in real time."

Sugihara first applied EDM to the more than 65 years of data archived by the California Cooperative Oceanic Fisheries Investigations (CalCOFI), a program that provides valuable data for long-term fisheries and coastal resources management, and has since applied the technique to topics spanning from climate change to cosmic rays.

In addition to Ye, Grant, and Sugihara, coauthors of the study include Richard Beamish, Laura Richards, and Jon Schnute of Fisheries and Oceans, Canada; Sarah Glaser of the University of Denver; and Chih-hao Hsieh of National Taiwan University.

The study was funded by the National Science Foundation (NSF), the Foundation for the Advancement of Outstanding Scholarship and Ministry of Science and Technology of Taiwan, the NSF NOAA Comparative Analysis of Marine Ecosystem Organization (CAMEO) Program, an NSF Graduate Research Fellowship, the Sugihara Family Trust, the Deutsche Bank-Jameson Complexity Studies Fund, and the McQuown Chair in Natural Science.

Media Contact

Mario Aguilera or Robert Monroe
scrippsnews@ucsd.edu
858-534-3624

 @UCSanDiego

http://www.ucsd.edu 

Mario Aguilera | EurekAlert!

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>