Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New concept to help set priorities in water management

15.10.2015

The basic principle behind most strategies aimed at renaturalising ecosystems is to increase biodiversity by restoring natural habitat structure, which should lead to improved ecosystem services in the process. These projects often do not result in the success researchers had hoped for because the complexity of ecological relationships is so vast that it is difficult to detect the precise ecological factors that have priority over the many others in a particular case. Researchers working at the University of Montana and the UFZ have now developed a theoretical framework – the concept of ecological simplification – aimed at closing this gap. They tested it in two iconic river landscapes.

It sounds rather simple: in order to restore the original high level of biodiversity in our rivers, they should be renaturalised, i.e. returned to their original state. Yet it really is not that easy as these efforts are often limited in practice, e.g. through historical, cultural or economic factors.


Engineering structures (rip-rap and standard groynes) along the shore of the Elbe River (Germany).

M. Scholz, UFZ


Natural habitats along the shore of the Missouri River (Montana, US)

A. Semmler

Furthermore, it is profoundly difficult for on-site researchers to examine the abundance of ecological factors and find the ones that take priority from an ecological perspective. All too often the priorities for action are stipulated in terms of technical and financial feasibility. This leads to elaborate renaturalisation measures often not achieving the sought-after success. But what are the right measures? Which priorities should be set?

To help with this decision-making process, researchers have developed the concept of ecological simplification and tested it in two river landscapes. The concept assumes that natural river landscapes are highly complex. This complexity involves various components, in particular spatial heterogeneity, the connectivity between spacial compartments and historical legacy. Human activity has influenced each of these components in various ways, inevitably reducing complexity.

In other words, it simplifies the system and thus reduces the number of ecological niches in which species can coexist. By systematically observing these components of complexity, causes of the simplification can be recognised and countermeasures can be introduced to remedy them. When selecting efficient management measures, it therefore makes a big difference whether the ecological problems arise from past transformations of habitat resulting from development of human infrastructure, from a history of pollution caused by chemicals, and/or from invasion by alien species.

In the case study, researchers carefully examined two rivers that primarily differ in terms of the duration of human influence: a river section of the Missouri River in eastern Montana (USA) with comparatively low human influence, and the Elbe River that flows through populated areas of north eastern Germany where it has been influenced by intensive agricultural activity, shaped as an important shipping lane, and isolated from its flood plains over most of its length. .

The authors’ concept recognizes that man-made bank structures such as the groyne fields of the River Elbe can be optimised for biodiversity. If they have the "right" shape, they can create ecological niches and increase the variety of species living there. A comparison of both rivers shows that although the original niche diversity of a natural location cannot be fully restored, certain parameters, e.g. the variety of food for the animals, are converging back to their natural state through the influence of man-made structures.

This knowledge makes it possible to compensate for losses in the variety of species that arose as a result of reducing the cross-section of the river created to make the river navigable. However, artificially increasing the complexity of the Elbe River also creates new problems, e.g. the fact that niches emerge in which invasive species can settle. This could make it difficult for native species to repopulate in the long term. As a result, the measures introduced need to take into consideration the amount of niches created as well as their quality for native species.

The research team now needs to start underpinning the theoretical concept with specific case studies and corresponding recommendations for action. They are currently dealing with the issue of how to improve the ecological compatibility of necessary man-made structures in rivers in an international consortium.


Publication:
Peipoch, Marc; Brauns, Mario; Hauer, F. Richard; Weitere, Markus; Valett, H. Maurice; (2015): Ecological simplification: human influences on riverscape complexity. http://dx.doi.org/10.1093/biosci/biv120

The study was funded in the USA by the National Science Foundation (NSF) EPSCoR Track-1 grant no. EPS-1101342 (INSTEP 3) through the Montana Institute on Ecosystems.

Further information:
Prof. H. Maurice Valett, Dr. Marc Peipoch Guell
University of Montana, Montana Institute on Ecosystems and Division of Biological Sciences
Tel. +1 (0)406-243-6058
http://hs.umt.edu/dbs/people/?s=Valett3809
http://www.umt.edu/directory/details/8f0990b07012074c51eaea6f974d01ee
and
Prof. Markus Weitere, Dr. Mario Brauns
Helmholtz Centre for Environmental Research (UFZ)
Tel.: +49 (0)391-810-9600, -9140
http://www.ufz.de/index.php?en=14086
https://www.ufz.de/index.php?en=21905
or via
Susanne Hufe (UFZ Press Office)
Tel.: +49 (0)341-235-1630
http://www.ufz.de/index.php?en=640

Weitere Informationen:

http://www.ufz.de/index.php?en=35159

Susanne Hufe | Helmholtz-Zentrum für Umweltforschung - UFZ

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>