Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New concept to help set priorities in water management

15.10.2015

The basic principle behind most strategies aimed at renaturalising ecosystems is to increase biodiversity by restoring natural habitat structure, which should lead to improved ecosystem services in the process. These projects often do not result in the success researchers had hoped for because the complexity of ecological relationships is so vast that it is difficult to detect the precise ecological factors that have priority over the many others in a particular case. Researchers working at the University of Montana and the UFZ have now developed a theoretical framework – the concept of ecological simplification – aimed at closing this gap. They tested it in two iconic river landscapes.

It sounds rather simple: in order to restore the original high level of biodiversity in our rivers, they should be renaturalised, i.e. returned to their original state. Yet it really is not that easy as these efforts are often limited in practice, e.g. through historical, cultural or economic factors.


Engineering structures (rip-rap and standard groynes) along the shore of the Elbe River (Germany).

M. Scholz, UFZ


Natural habitats along the shore of the Missouri River (Montana, US)

A. Semmler

Furthermore, it is profoundly difficult for on-site researchers to examine the abundance of ecological factors and find the ones that take priority from an ecological perspective. All too often the priorities for action are stipulated in terms of technical and financial feasibility. This leads to elaborate renaturalisation measures often not achieving the sought-after success. But what are the right measures? Which priorities should be set?

To help with this decision-making process, researchers have developed the concept of ecological simplification and tested it in two river landscapes. The concept assumes that natural river landscapes are highly complex. This complexity involves various components, in particular spatial heterogeneity, the connectivity between spacial compartments and historical legacy. Human activity has influenced each of these components in various ways, inevitably reducing complexity.

In other words, it simplifies the system and thus reduces the number of ecological niches in which species can coexist. By systematically observing these components of complexity, causes of the simplification can be recognised and countermeasures can be introduced to remedy them. When selecting efficient management measures, it therefore makes a big difference whether the ecological problems arise from past transformations of habitat resulting from development of human infrastructure, from a history of pollution caused by chemicals, and/or from invasion by alien species.

In the case study, researchers carefully examined two rivers that primarily differ in terms of the duration of human influence: a river section of the Missouri River in eastern Montana (USA) with comparatively low human influence, and the Elbe River that flows through populated areas of north eastern Germany where it has been influenced by intensive agricultural activity, shaped as an important shipping lane, and isolated from its flood plains over most of its length. .

The authors’ concept recognizes that man-made bank structures such as the groyne fields of the River Elbe can be optimised for biodiversity. If they have the "right" shape, they can create ecological niches and increase the variety of species living there. A comparison of both rivers shows that although the original niche diversity of a natural location cannot be fully restored, certain parameters, e.g. the variety of food for the animals, are converging back to their natural state through the influence of man-made structures.

This knowledge makes it possible to compensate for losses in the variety of species that arose as a result of reducing the cross-section of the river created to make the river navigable. However, artificially increasing the complexity of the Elbe River also creates new problems, e.g. the fact that niches emerge in which invasive species can settle. This could make it difficult for native species to repopulate in the long term. As a result, the measures introduced need to take into consideration the amount of niches created as well as their quality for native species.

The research team now needs to start underpinning the theoretical concept with specific case studies and corresponding recommendations for action. They are currently dealing with the issue of how to improve the ecological compatibility of necessary man-made structures in rivers in an international consortium.


Publication:
Peipoch, Marc; Brauns, Mario; Hauer, F. Richard; Weitere, Markus; Valett, H. Maurice; (2015): Ecological simplification: human influences on riverscape complexity. http://dx.doi.org/10.1093/biosci/biv120

The study was funded in the USA by the National Science Foundation (NSF) EPSCoR Track-1 grant no. EPS-1101342 (INSTEP 3) through the Montana Institute on Ecosystems.

Further information:
Prof. H. Maurice Valett, Dr. Marc Peipoch Guell
University of Montana, Montana Institute on Ecosystems and Division of Biological Sciences
Tel. +1 (0)406-243-6058
http://hs.umt.edu/dbs/people/?s=Valett3809
http://www.umt.edu/directory/details/8f0990b07012074c51eaea6f974d01ee
and
Prof. Markus Weitere, Dr. Mario Brauns
Helmholtz Centre for Environmental Research (UFZ)
Tel.: +49 (0)391-810-9600, -9140
http://www.ufz.de/index.php?en=14086
https://www.ufz.de/index.php?en=21905
or via
Susanne Hufe (UFZ Press Office)
Tel.: +49 (0)341-235-1630
http://www.ufz.de/index.php?en=640

Weitere Informationen:

http://www.ufz.de/index.php?en=35159

Susanne Hufe | Helmholtz-Zentrum für Umweltforschung - UFZ

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>