Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New approach for environmental test on livestock drugs


Drugs for livestock can harm beneficial organisms that break down dung. Therefore newly developed medical substances need to be tested on single species in the lab. An international research group including evolutionary biologists from the University of Zurich have been scrutinizing the reliability of such laboratory tests, evaluating the implementation of a field test based on the anti-parasitic drug ivermectin at four climatically different locations. The scientists thus presented a novel approach for more advanced environmental compatibility tests.

Livestock medications can impair beneficial organisms that break down dung. Too high a dosage of ivermectin, a common drug against parasites, harms coprophilous organisms, for instance. The toxicity of new livestock medications therefore needs to be verified in ecotoxicological tests with individual animal species such as the common yellow dung fly, the barn fly or a dung beetle.

Dung pat with a specific concentration of ivermectin.

Image: UZH

This involves determining the lethal dose leading to the death of half the maggots (LD50 test). However, sensitivity to toxic substances is known to vary significantly even among closely related coprophilous organisms, which begs the question as to how representative the reaction of any individual animal species actually is in such laboratory tests. After all, there is a high risk that more sensitive species will continue to be harmed by the substance, jeopardizing key ecosystem functions in the long run.

An international research group including UZH evolutionary biologist Wolf Blanckenhorn recently proposed extending the testing scheme to a representative selection of all organisms that break down dung, ideally in their natural environment. The scientists now presented a successful and more comprehensive higher-tier ecotoxicological field test. Their study provides important insights into minimizing the risks of drug residues in nature.

Earthworms compensate for loss of coprophilous insects

For their feasibility study, the scientists worked on cattle pastures in the Canadian Prairie and the agricultural landscapes of southern France, the Netherlands and Switzerland – four locations with very different climatic conditions. On these pastures, they distributed dung pats with different concentrations of ivermectin. “As expected, the overall number and diversity of dung beetles, dung flies and parasitoid wasps decreased as the ivermectin concentration increased,” explains Blanckenhorn.

However, a number of species also proved to be resistant: earthworms and springtails living in the ground underneath the cowpats were not notably affected, and a parallel test ultimately revealed that dung degradation was not significantly impaired. “Evidently, beneficial organisms not affected as much by the drug, such as earthworms, were apparently able to compensate for the loss of other organisms,” sums up Blanckenhorn.

A basis for decision makers and licensing authorities

Despite diverse environmental conditions and methodological details, the results were very similar and reproducible in all four habitats. “Our field approach was therefore a success and in principle can be recommended. The regulation authorities responsible, such as the European Medicines Agency EMA, now have to decide whether this more conclusive yet more complex test should be required in the future,” says Blanckenhorn.

The amount of effort involved in determining the numerous dung organisms is tremendous and impossible without expert biological knowledge. “Classifying species via so-called DNA barcoding, based on each organism’s unique genetic fingerprint, is possible in principle and will probably be more cost-effective in the future. However, this approach requires the establishment of a complete database for coprophilous organisms, which does not yet exist,” concludes the scientist.


Kevin D. Floate, Wolf U. Blanckenhorn. Special Section: Non-target Structural and Functional Effects of Ivermectin Residues in Cattle Dung on Pasture – Guidance for Researchers and Regulators. Environmental Toxicology and Chemistry. Volume 35, Issue 8. July 21, 2016. DOI: 10.1002/etc.3549


Scientists discovered and refined ivermectin in Japan in the mid-1970s, eventually winning the Nobel Prize in Medicine in 2015. The drug has been used to cure river blindness, scabies and roundworms in the gut of humans, as well as parasites in livestock and pets.

Chemically ivermectin belongs to the avermectins, which generally interfere with ion channel transport through the cell membrane and thus the molting of pest organisms. If the ivermectin dosage is too high and excreted in the feces of treated livestock, the drug also kills beneficial organisms that break down dung. This has a negative impact on the functioning of the entire ecosystem: in extreme cases, the dung is no longer degraded at all and the pasture cannot be used any further.


Prof. Dr. Wolf U. Blanckenhorn
Department of Evolutionary Biology and Environmental Studies
University of Zurich
Phone: +41 44 635 47 55

Media Relations
University of Zurich
Phone: +41 44 634 44 67

Weitere Informationen:

Nathalie Huber | Universität Zürich

Further reports about: Ecosystem Environmental Phone animal species conditions dosage drugs earthworms fly parasites species

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>