Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NEIKER is studying the impact of climate change on the soil ecosystem

28.11.2014

The Basque Institute for Agricultural Research and Development NEIKER-Tecnalia has had a Microbial Observatory in the Ordesa and Monte Perdido National Nature Reserve (Huesca Pyrenees) since 2011.

Its purpose is to evaluate the impact of climate change on the ecosystems of the soil by monitoring its microbial properties over time. The research areas are located at altitudes of between 1,500 and 2,600 metres, which provides a broad range of different climate conditions and makes it possible to observe how the altitude affects the properties of the soil and the micro-organisms living in it.

Preliminary results indicate that microbial properties are highly dependent on the physical and chemical properties of the soil on a small scale and on the environmental conditions existing at the moment when the samples are gathered.

To conduct this research, NEIKER-Tecnalia is using the most advanced techniques in the matter of molecular biology, which have revolutionised microbial ecology. Specifically, massive sequencing analyses are being carried out right now; they allow a large number of genes to be sequenced and identified within a short space of time. The genetic sequencing of the subterranean biosphere is seeking to gain a better understanding of the structure and function of the microbial communities across the altitude gradient.

NEIKER-Tecnalia’s Microbial Observatory will contribute towards improving the current understanding of the effects of climate change on soil microbial communities and associated ecological processes. The alpine area where it is located is particularly suitable for a climate change observatory.

Firstly, it is a remote spot relatively isolated from direct anthropogenic impacts, which means that global effects like climate change can be clearly perceived without the interference of more local environmental factors. Secondly, the altitude gradients that exist in the mountains in turn create clearly marked climate gradients within short distances; in other words, different climate conditions can be found at different altitudes.

Micro-organisms adapt more quickly than plants and macro-organisms

Micro-organisms adapt more quickly to changes than plants or other macro-organisms, which means they are ideal bioindicators of the impact of sources of environmental stress on the functioning of ecosystems.

It is very important to have a record of the alterations gradually occurring in the soil ecosystem as a result of climate change to be able to more accurately predict what future scenarios are going to be in store. It is important to stress that the soil is our most important resource; it is the basis of the terrestrial ecosystem and 95% of our food comes directly or indirectly from it.

The role of micro-organisms in relation to the functioning of the soil ecosystem is fundamental. The soil, which has been traditionally regarded as an inanimate item made up of minerals and chemical substances, contains a myriad of micro-organisms that are responsible for many of its vital functions and, consequently, its health. These functions include the decomposition and recycling of nutrients from dead plant and animal tissue, nitrogen fixing, the maintaining of soil structure and the elimination of contaminants.

It can be predicted that, in the long term, climate change will cause the biota of mountain soil to migrate towards higher altitudes in the quest for the optimum bioclimatic environment. The problem is that this migration has a limit, which is the summit of the mountain, beyond which no migration or escape is possible.


http://www.basqueresearch.com/berria_irakurri.asp?Berri_Kod=5336&hizk=I#.VHcWTWfOXTo

Garazi Andonegi | AlphaGalileo

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>