Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More grasslands in Tibet could bring climate improvements

20.08.2015

In the Arctic, enhanced vegetation growth amplifies global warming. On the Tibetan Plateau, however, the situation is the reverse.
“The trend in Tibet is the opposite of what we are seeing in the Arctic,” says Professor Deliang Chen from the University of Gothenburg. “By restoring grasslands there, the climate can be improved – both locally and globally.”

In the Arctic, warming increases like a spiral. Global warming means that the periods of growth are becoming longer and vegetation growth is increasing. At the same time, heat transfer to the Arctic from lower latitudes is rising, reducing sea ice there, and this in turn is contributing towards a faster local rise in temperature.


Professor Deliang Chen in Tibet.

A new research study published in the highly respected research journal PNAS shows that the situation is the reverse on the Tibetan Plateau.

Vegetation on the Tibetan Plateau has also increased as a result of global warming. However, in contrast to the Arctic areas, the longer periods of growth and the increased vegetation activity here appear to mean that global warming is being weakened.

“The reason for this is that increased evapotranspiration from plants is cooling the air,” explains Deliang Chen, Professor of Physical Meteorology at the University of Gothenburg.

The climate models also simulate daytime cooling as a result of the increased vegetation, albeit with a smaller magnitude than currently observed.

“Our results suggest that actions to restore native grasslands in degraded areas, roughly one-third of the plateau, will both facilitate a sustainable ecological development in this region and bring local and global climate benefits.”

More accurate simulations of the biophysical coupling between the land surface and the atmosphere are needed to help fully understand regional climate change over the Tibetan Plateau.

Link to article: http://www.pnas.org/content/112/30/9299.abstract

For more information, please contact:
Deliang Chen, August Röhss Professor at the Department of Earth Sciences
Tel.: +46 (0)31 786 4813, e-mail: deliang@gvc.gu.se, http://rcg.gvc.gu.se/dc

Weitere Informationen:

http://science.gu.se/english/News/News_detail/?languageId=100001&contentId=1...

Henrik Axlid | idw - Informationsdienst Wissenschaft

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>