Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microplastics: Rhine One of the Most Polluted Rivers Worldwide

08.12.2015

Between Basel and Rotterdam, the Rhine has one of the highest microplastics pollution so far measured in rivers, with the Rhine-Ruhr metropolitan area showing peak numbers of up to four times the average. Among investigated rivers, the Rhine is thus among those most heavily polluted with microplastics. This is reported by researchers from the University of Basel, who evaluated, for the first time, the plastic concentration at the surface of one of the big European rivers. Their results have been published in the journal Scientific Reports.

Tiny plastic particles smaller than five millimeters, so-called microplastics, are found in almost all waterbodies these days. They occur as intermediate products in plastic production or as pellets for cleansing and care products or result from fragmentation of plastic debris.


A sample from the Rhine near Duisburg consisting of over 65% opaque spherules in 15-fold magnification; the spherules have a diameter of 400–900 micrometers.

(University of Basel, Thomas Mani)

They are released into the environment due to improper handling. In the oceans, they contribute to the ‘great garbage patches’ and are ingested by many organisms, from protozoa to baleen whales. Although as much as 80% of this marine plastic is emitted by rivers to the oceans, not a single great river has yet been scientifically studied for the microplastics load over its length.

Environmental pollution mapped

For the first time, environmental scientists from the University of Basel have now reported the abundance and composition of microplastics at the surface of the Rhine between Basel and Rotterdam. They took 31 water samples at 11 locations over a stretch of 820 kilometers. Microplastics were found in all samples in different concentrations, with an average of 892,777 particles per square kilometer (or 4,960 particles per 1000 cubic meters).

The findings reflect the major potential sources of environmental pollution along the Rhine, such as metropolitan areas and industrial plants, waste water treatment plants and weirs, as well as the particular current conditions.

The minimum average microplastics pollution was found in the stretch between Basel and Mainz (202,900 particles per square kilometer), a medium average at Bad Honnef, Köln-Porz and Leverkusen (714,053) and the highest average in the Rhine-Ruhr metropolitan area (2,333,665). A peak microplastics concentration was measured at Rees on the Nederhijn, where 3.9 million plastic items per square kilometer (or 21,839 particles per 1000 cubic meters) were found in a single water sample.

191 million particles a day

“The Rhine's microplastics concentrations are thus among the highest so far studied worldwide”, says biologist Professor Patricia Holm from the Department of Environmental Sciences at the University of Basel. For the most polluted Swiss lakes, Lake Geneva and Lake Maggiore, 220,000 particles per square kilometer were reported in other studies. As a further example, in Lake Erie in the U.S., only 105,503 items per square kilometer were found. Significantly less microplastics were also found in the river Rhone near Geneva. In general, extreme peaks may be reached after heavy rain or accidents.

“Our results show that the Rhine is significantly polluted with microplastics”, says Holm. ”If we assume an average microplastics concentration on the day we took the water sample in Rees, we can say that the Rhine contributes a daily load of more than 191 million plastic particles to the North Sea, and that only takes into account the surface. Even though, in terms of weight, this only corresponds to roughly 25 to 30 kilos a day, this adds up to 10 tons a year. Each one of these billions of plastic items can be ingested by organisms and have negative effects on their health.”

Origins partially unclear

The scientists concentrated on the detection of microplastics found in large numbers in production worldwide and of low specific density, such as polyethylene, polypropylene and polystyrene. The types of plastics are used in the plastic industry e.g. for packaging, office equipment and vehicle construction and float on the water surface for long distances. Samples were mostly taken from boats of the Rhine Police Basel-Stadt and the Waterways and Shipping Administration in Germany and the Netherlands.

The researchers found microplastics in the shape of opaque and transparent spherules as well as of fragments and fibers. “The extremely high proportion of more than 60 percent spherules in certain parts of the river is striking. Where they come from and what their former use was, is largely unclear so far”, says Thomas Mani, first author of the study and PhD student at the Department of Environmental Sciences of the University of Basel.

Original source

Thomas Mani, Armin Hauk, Ulrich Walter & Patricia Burkhardt-Holm
Microplastics Profile along the Rhine River
Scientific Reports (2015), doi:

Further information

Thomas Mani, Department for Environmental Sciences, Program “Mensch-Gesellschaft-Umwelt”, phone: +41 (0)61 267 04 05, and 41 (0)79 617 11 96, email: thomas.mani@unibas.ch

Prof. Patricia Holm, Department of Environmental Sciences, Program “Mensch-Gesellschaft-Umwelt”, phone: +41 (0)61 267 04 02, email: patricia.holm@unibas.ch

Christoph Dieffenbacher | Universität Basel

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>