Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Man-made underwater sound may have wider ecosystem effects than previously thought

05.02.2016

Underwater sound linked to human activity could alter the behaviour of seabed creatures that play a vital role in marine ecosystems, according to new research from the University of Southampton.

The study, reported in the journal Scientific Reports published by Nature, found that exposure to sounds that resemble shipping traffic and offshore construction activities results in behavioural responses in certain invertebrate species that live in the marine sediment.


This is a langoustine (Nephrops norvegicus).

Credit: University of Southampton

These species make a crucial contribution to the seabed ecosystem as their burrowing and bioirrigation activities (how much the organism moves water in and out of the sediment by its actions) are crucial in nutrient recycling and carbon storage.

The study showed that some man-made sounds can cause certain species to reduce irrigation and sediment turnover. Such reductions can lead to the formation of compacted sediments that suffer reduced oxygen, potentially becoming anoxic (depleted of dissolved oxygen and a more severe condition of hypoxia), which may have an impact on seabed productivity, sediment biodiversity and also fisheries production.

Lead author Martin Solan, Professor in Marine Ecology, said: "Coastal and shelf environments support high levels of biodiversity that are vital in mediating ecosystem processes, but they are also subject to noise associated with increasing levels of offshore human activity. Previous work has almost exclusively focussed on direct physiological or behavioural responses in marine mammals and fish, and has not previously addressed the indirect impacts of sound on ecosystem properties.

"Our study provides evidence that exposing coastal environments to anthropogenic sound fields is likely to have much wider ecosystem consequences than are presently understood."

The Southampton researchers exposed three species - the langoustine (Nephrops norvegicus), a slim, orange-pink lobster which grows up to 25 cm long, the Manila clam (Ruditapes philippinarum) and the brittlestar (Amphiura filfiformis) ¬- to two different types of underwater sound fields: continuous broadband noise (CBN) that mimics shipping traffic and intermittent broadband noise (IBN) reflecting marine construction activity.

The sounds were reproduced in controlled test tanks and experiments were run on one species at a time. For CBN, a recording (one minute duration, continuously looped) of a ship made in the English Channel at a distance of around 100 metres was used'. For IBN, a recording (two minutes duration, continuously looped) of a wind farm in the North Sea at a distance of about 60 metres was used.

The results showed that the sounds could alter the way these species behaved when interacting with their environments.

With the langoustine, which disturbs the sediment to create burrows in which it lives, the researchers saw a reduction in the depth of sediment redistribution (how much of the surface sediment was overturned into the deeper layers) with exposure to IBN or CBN. Under CBN and IBN there was evidence that bioirrigation increased.

The Manila clam, a commercial fishery species in Europe that lives in the sediment and connects to the overlying water through a retractable siphon, reduced its surface activity under CBN, which affected the surface roughness of the sediment. Bioirrigation, which is strongly influenced by clam behaviour and the activity of the siphon, was markedly reduced by CBN and slightly reduced under IBN.

However, the sound fields had little impact on the brittlestar.

Co-author Dr Chris Hauton, Associate Professor in Invertebrate Ecophysiology and Immune Function, said: "I think these findings raise the prospect that anthropogenic sounds in the marine environment are impacting marine invertebrate species in ways that have not been previously anticipated. The potential effects of anthropogenic noise on ecosystem function, mediated through changes in organism behaviour merits further study as, in the long term, it may identify impacts to the productivity of seabed systems that have, to date, not really been constrained."

Tim Leighton, Professor of Ultrasonics and Underwater Acoustics and study co-author, added: "There has been much discussion over the last decade of the extent to which whales, dolphins and fish stocks, might be disturbed by the sounds from shipping, windfarms and their construction, seismic exploration etc. However, one set of ocean denizens has until now been ignored, and unlike these other classes, they cannot easily move away from loud man-made sound sources. These are the bottom feeders, such as crabs, shellfish and invertebrates similar to the ones in our study, which are crucial to healthy and commercially successful oceans because they form the bottom of the food chain.

Media Contact

Glenn Harris
G.Harris@soton.ac.uk
44-023-805-93212

 @unisouthampton

http://www.southampton.ac.uk/ 

Glenn Harris | EurekAlert!

Further reports about: Ecosystem IBN activity coastal environments construction underwater

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>