Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Invasive Species in the Great Lakes by 2063


New study shows the vulnerability of the basin to future invaders – and calls for regulations to mitigate this threat

The Great Lakes have been invaded by more non-native species than any other freshwater ecosystem in the world. In spite of increasing efforts to stem the tide of invasion threats, the lakes remain vulnerable, according to scientists from McGill University and colleagues in Canada and the United States. If no new regulations are enforced, they predict new waves of invasions and identify some species that could invade the Lakes over the next 50 years.

©Michal Grabowski

A killer shrimp, one of the species at a high risk of invading the Great Lakes

Over the past two centuries, more than 180 non-native species have been recorded in the Great Lakes and the rivers that flow into them. Nearly 20% of these species are considered to be harmful ecologically and economically, posing threats to the Lakes’ native biodiversity and multibillion dollar fishery. New threats are emerging because of risks associated with trade in live organisms and climate change, the researchers caution in a study in the Journal of Great Lakes Research.

Effective legislation?
In recent years, the pace of species invasions appears to have slowed dramatically, as measures have been taken to protect the lakes. This is why the three scenarios (optimistic, pessimistic and status quo) the researchers considered for the next 50 years hinge on the implementation and effectiveness of regulations aimed at blocking current means of entry for invasive species.

Indeed, for many years, shipping was the primary pathway for new species to enter the basin, until the rules were tightened. Ballast water is taken on board and later discharged by ships to maintain a consistent weight as they receive and offload cargo. In 2006 and 2008, new regulations were mandated that required ships to discharge freshwater and fill their tanks with saltwater before entering the St. Lawrence Seaway. This means that ballast tank water should contain only saltwater animals, which are incapable of surviving and multiplying in the Great Lakes. “No new species have been recorded since 2006,” says Katie Pagnucco, PhD student at McGill and lead author of the study. “We may have closed the door on ballast water-mediated invasions. That remains to be seen. But other doors are still open.”

Future scenarios
In the most pessimistic scenario, greater numbers of non-native species are introduced, as ballast water regulations prove to be ineffective in the long term, and live trade continues to expand. Live trade – the importation of live animals and plants for food markets or to be used as baitfish and aquarium pets – is largely unregulated. Consequently, in 50 years, the Great Lakes would be populated with many new invaders, most of which may come from inland waterways where Europe and Asia meet – the region around the Black Sea. This region is the source of some of the most disruptive invaders in the Great Lakes today, such as the zebra mussel, and still has many species at a high risk of invading the North American lakes and rivers, such as the killer shrimp or the monkey goby.

The status-quo scenario includes no additional protection policies. Ballast water regulations remain effective, and no new species arrive with overseas ships. The primary cause of invasions in this scenario becomes live trade. The main threat would be Asian carp species, which are well adapted to temperature conditions in much of the Great Lakes. They are voracious plankton-feeders, capable of diverting energy from the rest of the food web, and thus could impact the fishery.

In the most optimistic scenario, the risk of invasion is minimized by harmonized policies enforced by Canada and the United States. “Invasions are a transboundary issue,” says McGill professor Anthony Ricciardi, an invasive-species biologist who supervised the study. “In addition to harmonized regulations on live trade, the two countries must coordinate early detection and rapid response to new threats – before an invasion has progressed beyond control.”

Weakened temperature barrier
The researchers caution that climate change will complicate each of the scenarios. “For example, the Great Lakes have already had all the invasive species from the Mississippi that could survive there, as a temperature barrier is protecting us from others” notes Pagnucco. But warmer waters will facilitate the migration and establishment of southern species, most notably via the canal from the Mississippi to the Great Lakes.
Invasion risks are dynamic and management responses must evolve to cope with them, Ricciardi and Pagnucco caution.

The study will be published in a special issue of the Journal of Great Lakes Research that examines the history of the Great Lakes over the past few decades and forecasts their future.

This work was supported by the Great Lakes Futures Project, funded by the Transborder Research University Network, Environment Canada, Michigan Sea Grant, New York Sea Grant, and supporting universities. Additional funding was provided by the Canadian Aquatic Invasive Species Network and an NSERC Discovery

“The future of species invasions in the Great Lakes-St. Lawrence River basin”.
Journal of Great Lakes Research, available online December 3, 2014
Katie S. Pagnucco, George A. Maynard, Shannon A. Fera, Norman D. Yan,
Thomas F. Nalepa, Anthony Ricciardi

Contact Information
Melody Enguix
Communications Officer
Phone: 514-398-6751

Melody Enguix | newswise
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>