Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Invasive Insects Cost the World Billions Per Year


Ecologists have estimated that invasive (non-native) insects cost humanity tens of billions of dollars a year – and are likely to increase under climate change and growing international trade.

Researchers from the University of Adelaide in Australia and CNRS and Paris-Sud University in France have compiled the first comprehensive and robust database of the global economic costs of invasive insects ─ but say estimates are likely to be greatly under-estimated because of the lack of research into costs in many parts of the world.

Credit: Dimitri Geystor (France)

One of the most destructive pests of hardwood trees, the Gypsy moth (Lymantria dispar).

Previous estimates have been “spatially incomplete and of questionable quality”.

Published in the journal Nature Communications, the researchers report a minimum US$70billion a year cost globally to goods and services, and more than US$6.9 billion a year on health costs of invasive insects.

“Most of the damage to human industry occurs in agriculture and forestry ─ damage and loss of production but also costs of clean-up, eradication and prevention,” says Professor Corey Bradshaw, Sir Hubert Wilkins Chair of Climate Change at the University of Adelaide’s Environment Institute. “But billions of dollars are spent on the treatment and prevention of infectious diseases like dengue, West Nile virus and chikungunya disease spread by insects that have invaded other countries.”

Among the costly insects are the Formosan subterranean termite (Coptotermes formosanus) transported worldwide from eastern Asia and capable of consuming as much as 400 g of wood a day, and the gypsy moth (Lymantria dispar), of Eurasian origin, which is one of the most destructive pests of hardwood trees.

The researchers report that these costs are probably just “the tip of the largely unseen and unmeasured iceberg” because many regions of the world, such as Africa and South America, have yet to measure and estimate many of these costs.

Correcting for minimal sampling bias could bring total annual global costs of invasive insects as high as US$270 billion.

“Ultimately, the average citizen pays for most of these costs, but we can generally reduce the costliest sorts of damage by investing in better detection and early eradication measures,” says Professor Bradshaw.

The researchers say that costs are also likely to increase.

“There are two main phenomena leading to an increased frequency of introductions and potentially expanding distributions of the costliest insect invaders: international trade and global warming,” says Dr Franck Courchamp, Senior CNRS Researcher at Systematic Ecology and Evolution Laboratory (CNRS/Paris-Sud University/AgroParisTech).

“In addition to improving guidelines for estimating the full costs of invasive insects, vigilant planning, public-awareness campaigns and community participation could potentially relieve society of billions of dollars of annual expense, and reduce a great deal of human suffering.”

The research was supported by Foundation BNP Paribas, ANR InvaCost and the Australian Research Council.

Media Contact:

Professor Corey Bradshaw, University of Adelaide, Mobile: +61 (0) 400 697 665,

Dr Franck Courchamp, CNRS, Mobile: +33 16915 5685,

Robyn Mills, Media Officer, Phone: +61 8 8313 6341, Mobile: +61 (0)410 689 084,

Robyn Mills | newswise

Further reports about: CNRS West Nile virus economic costs global warming gypsy moth insects

More articles from Ecology, The Environment and Conservation:

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

nachricht How to detect water contamination in situ?
22.09.2016 | Tomsk Polytechnic University (TPU)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>