Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

International network connects experimental research in European waters

21.03.2017

Lakes, rivers, estuaries and oceans are closely connected. Despite this, aquatic research is still divided in marine and freshwater sciences. Now, scientists from 19 leading research institutes and universities and two enterprises from 12 countries across Europe aim to change this and have joined forces in the project “AQUACOSM - Network of Leading European AQUAtic MesoCOSM Facilities Connecting Mountains to Oceans from the Arctic to the Mediterranean”. The network will perform the first systematic large-scale experiments in both freshwater and marine ecosystems. The project is coordinated and lead by Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB).

"For more than 100 years, inland water and marine research have largely developed in parallel to each other. Now it's time to reunite both", says IGB researcher Jens Nejstgaard, who leads the new EU project. In AQACOSM scientists from both disciplines are building an integrated, international network of experimental infrastructures. Their aim is to significantly improve the quality of experimental data for all types of water.


The experimental infrastructures also include the IGB-LakeLab in Lake Stechlin with its unique dimension (24 mesocosms with 1,270 m3 each).

© HTW Dresden/Oczipka

"We want to better coordinate international large-scale experimental research projects, develop good practices together, and open up the freshwater and marine mesocosm research infrastructures for a broader international, interdisciplinary collaboration", says Jens Nejstgaard.

Mesocosms are containers in which large volumes of water including the natural organisms is experimentally enclosed and manipulated. In this way effects of individual and combined stress factors can be tested on entire ecosystems over weeks to years.

Within the project AQUACOSM researchers will examine how different aquatic ecosystems react to environmental impacts caused by global climate change and the increasing pressure by the growing world population.

"The impact of these stress factors can vary widely within different ecosystems and seasons", emphasizes Nejstgaard. Therefore they have to be investigated in different climatic and geographic regions, using comparable mesocosm experiments and measurement methods. AQUACOSM offers the necessary research infrastructures to do experimental research in a range of different European water types, in climatic and geographic zones stretching from the Arctic to the Mediterranean.

The experimental infrastructures of the 21 partner institutions include, for example, tank systems and flow channels on land, such as in Lunz am See (Austria) and large free-floating open-ocean facilities such as The Kiel Offshore Mesocosms (KOSMOS). The IGB-LakeLab in Lake Stechlin also set a new benchmark in experimental freshwater research with its unique dimension (24 mesocosms with 1,270 m3 each).

Launched in January 2017, the AQUACOSM project runs until December 2020 and is unique in size and approach. It is supported by the European Union H2020-INFRAIA Project No. 731065 with a budget of € 9,999,807.

Further information is available at http://www.aquacosm.eu

Contact persons:

Dr. Jens C Nejstgaard
Project Leader/Coordinator
Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB)
Nejstgaard@igb-berlin.de
Tel: +49 33082 699 40

Dr. Stella A Berger
Transnational Access Coordinator
Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB)
Berger@igb-berlin.de
Tel: +49 33082 699 41

Dr. Paraskevi Pitta
Dissemination Coordinator
Hellenic Center for Marine Research, HCMR, Greece
Vpitta@hcmr.gr
Tel: +30 2810 337829

Further information on the Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB):

http://www.igb-berlin.de

Work at IGB combines basic research with preventive research as a basis for the sustainable management of freshwaters. In the process, IGB explores the structure and function of aquatic ecosystems under near-natural conditions and under the effect of multiple stressors. Its key research activities include the long-term development of lakes, rivers and wetlands under rapidly changing global, regional and local environmental conditions, the development of coupled ecological and socio-economic models, the renaturation of ecosystems, and the biodiversity of aquatic habitats. Work is conducted in close cooperation with universities and research institutions from the Berlin/Brandenburg region as well as worldwide. IGB is a member of the Forschungsverbund Berlin e.V., an association of eight research institutes of natural sciences, life sciences and environmental sciences in Berlin. The institutes are members of the Leibniz Association.

Angelina Tittmann | idw - Informationsdienst Wissenschaft

Further reports about: Fisheries Freshwater Ecology IGB aquatic aquatic ecosystems

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

Im Focus: First long-term stabile brain implant developed based on an anti-inflammatory coating

No sugar coating, but sweet nonetheless

Complex neurotechnological devices are required to directly select and influence brain waves inside the skull’s interior. Although it has become relatively...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

 
Latest News

Banned industrial solvent sheds new light on methane mystery

18.04.2017 | Physics and Astronomy

Computers create recipe for two new magnetic materials

18.04.2017 | Materials Sciences

Tweaking a molecule's structure can send it down a different path to crystallization

18.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>