Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

International network connects experimental research in European waters

21.03.2017

Lakes, rivers, estuaries and oceans are closely connected. Despite this, aquatic research is still divided in marine and freshwater sciences. Now, scientists from 19 leading research institutes and universities and two enterprises from 12 countries across Europe aim to change this and have joined forces in the project “AQUACOSM - Network of Leading European AQUAtic MesoCOSM Facilities Connecting Mountains to Oceans from the Arctic to the Mediterranean”. The network will perform the first systematic large-scale experiments in both freshwater and marine ecosystems. The project is coordinated and lead by Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB).

"For more than 100 years, inland water and marine research have largely developed in parallel to each other. Now it's time to reunite both", says IGB researcher Jens Nejstgaard, who leads the new EU project. In AQACOSM scientists from both disciplines are building an integrated, international network of experimental infrastructures. Their aim is to significantly improve the quality of experimental data for all types of water.


The experimental infrastructures also include the IGB-LakeLab in Lake Stechlin with its unique dimension (24 mesocosms with 1,270 m3 each).

© HTW Dresden/Oczipka

"We want to better coordinate international large-scale experimental research projects, develop good practices together, and open up the freshwater and marine mesocosm research infrastructures for a broader international, interdisciplinary collaboration", says Jens Nejstgaard.

Mesocosms are containers in which large volumes of water including the natural organisms is experimentally enclosed and manipulated. In this way effects of individual and combined stress factors can be tested on entire ecosystems over weeks to years.

Within the project AQUACOSM researchers will examine how different aquatic ecosystems react to environmental impacts caused by global climate change and the increasing pressure by the growing world population.

"The impact of these stress factors can vary widely within different ecosystems and seasons", emphasizes Nejstgaard. Therefore they have to be investigated in different climatic and geographic regions, using comparable mesocosm experiments and measurement methods. AQUACOSM offers the necessary research infrastructures to do experimental research in a range of different European water types, in climatic and geographic zones stretching from the Arctic to the Mediterranean.

The experimental infrastructures of the 21 partner institutions include, for example, tank systems and flow channels on land, such as in Lunz am See (Austria) and large free-floating open-ocean facilities such as The Kiel Offshore Mesocosms (KOSMOS). The IGB-LakeLab in Lake Stechlin also set a new benchmark in experimental freshwater research with its unique dimension (24 mesocosms with 1,270 m3 each).

Launched in January 2017, the AQUACOSM project runs until December 2020 and is unique in size and approach. It is supported by the European Union H2020-INFRAIA Project No. 731065 with a budget of € 9,999,807.

Further information is available at http://www.aquacosm.eu

Contact persons:

Dr. Jens C Nejstgaard
Project Leader/Coordinator
Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB)
Nejstgaard@igb-berlin.de
Tel: +49 33082 699 40

Dr. Stella A Berger
Transnational Access Coordinator
Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB)
Berger@igb-berlin.de
Tel: +49 33082 699 41

Dr. Paraskevi Pitta
Dissemination Coordinator
Hellenic Center for Marine Research, HCMR, Greece
Vpitta@hcmr.gr
Tel: +30 2810 337829

Further information on the Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB):

http://www.igb-berlin.de

Work at IGB combines basic research with preventive research as a basis for the sustainable management of freshwaters. In the process, IGB explores the structure and function of aquatic ecosystems under near-natural conditions and under the effect of multiple stressors. Its key research activities include the long-term development of lakes, rivers and wetlands under rapidly changing global, regional and local environmental conditions, the development of coupled ecological and socio-economic models, the renaturation of ecosystems, and the biodiversity of aquatic habitats. Work is conducted in close cooperation with universities and research institutions from the Berlin/Brandenburg region as well as worldwide. IGB is a member of the Forschungsverbund Berlin e.V., an association of eight research institutes of natural sciences, life sciences and environmental sciences in Berlin. The institutes are members of the Leibniz Association.

Angelina Tittmann | idw - Informationsdienst Wissenschaft

Further reports about: Fisheries Freshwater Ecology IGB aquatic aquatic ecosystems

More articles from Ecology, The Environment and Conservation:

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Understanding animal social networks can aid wildlife conservation
23.06.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

New 3-D model predicts best planting practices for farmers

26.06.2017 | Agricultural and Forestry Science

New research reveals impact of seismic surveys on zooplankton

26.06.2017 | Life Sciences

Correct connections are crucial

26.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>