Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hunting pressure on forest animals in Africa is on the increase

09.02.2016

Many populations of African animal species have dramatically decreased or already disappeared altogether. A team of European researchers led by Goethe University Frankfurt has now predicted hunting pressure for the Congo Basin and produced a detailed map, which could help in regional planning.

Since about 25 years, animal species in West and Central Africa are no longer being hunted solely for the purpose of local self-sufficiency, but increasingly also for sale in urban areas several hundred kilometres away.


Confiscated bushmeat in Dzanga Sangha

WWF

As a consequence, many populations have dramatically decreased or already disappeared altogether. A team of European researchers led by Goethe University Frankfurt has now predicted hunting pressure for the Congo Basin and produced a detailed map, which could help in regional planning.

The hunted species are mostly mammals, but also some reptile and bird species. In many areas, they are the only cheap and easily available source of animal protein for the rural community. However, the commercialization of the bushmeat trade has meanwhile led also to the “Empty Forest Syndrome” in forest ecosystems throughout Africa.

... more about:
»WWF »bushmeat »nature reserves

The sale of bushmeat allows the rural community to purchase products or services which go beyond simple self-sufficiency. This has far-reaching ecological consequences, which ultimately also threaten the existence of the rural population. For example, with the disappearance of the herbivorous animals which serve as seed carriers, the forests disappear in the long term too.

The research team led by Bruno Streit analysed reports published between 1990 and 2007 on the bushmeat on sale on markets in the Congo Basin (Cameroon, Central African Republic, Democratic Republic of the Congo, Equatorial Guinea, Gabon and the Republic of the Congo).

On the basis of the number of carcasses openly on sale and the catchment area of the markets, they calculated the annual harvest rates of bushmeat per square kilometre. They then correlated these figures with socio-economic variables, such as population density, the density of the road network and the distance of the markets to the nature reserves. In a further step, they defined different classes of potential hunting pressure.

“For a quarter of the total area, we calculated a level of hunting pressure which was somewhat lower”, explains Professor Bruno Streit of the Institute of Ecology, Evolution and Diversity at Goethe University Frankfurt.

“However, our prediction foresees severe to very severe hunting pressure across 39 percent of the area of the Congo Basin. This is the case above all in areas with a very dense network of traffic routes, often in proximity to nature reserves”, continues Stefan Ziegler of the WWF. Thus the internationally famous Virunga National Park and the Okapi Wildlife Reserve in the east of the Democratic Republic of the Congo also lie in such areas.

The map produced by the researchers could help to support sustainable regional planning by ensuring that - as far as possible - roads do not carve up areas rich in wildlife. The map also identifies neuralgic points where the potential for hunting pressure is particularly high. Anti-poaching measures should concentrate on these zones.

The report stemmed from a joint project between Goethe University Frankfurt, experts in remote sensing at the University of Würzburg, and conservationists from WWF Germany.

Publication: Stefan Ziegler, John E. Fa, Christian Wohlfart, Bruno Streit, Stefanie Jacob and Martin Wegmann: Mapping Bushmeat Hunting Pressure in Central Africa, in: Biotropica, 29 Januar 2016 DOI: 10.1111/btp.12286; http://onlinelibrary.wiley.com/doi/10.1111/btp.12286/abstract

Pictures for dowload: www.uni-frankfurt.de/59967888

Information: Prof. Bruno Streit, Institute for Ecology, Evolution and Diversity, Campus Riedberg, Tel.: (069) 798-42160, -42162, streit@bio.uni-frankfurt.de.


Goethe University is a research-oriented university in the European financial centre Frankfurt founded in 1914 with purely private funds by liberally-oriented Frankfurt citizens. It is dedicated to research and education under the motto "Science for Society" and to this day continues to function as a "citizens’ university". Many of the early benefactors were Jewish. Over the past 100 years, Goethe University has done pioneering work in the social and sociological sciences, chemistry, quantum physics, brain research and labour law. It gained a unique level of autonomy on 1 January 2008 by returning to its historic roots as a privately funded university. Today, it is among the top ten in external funding and among the top three largest universities in Germany, with three clusters of excellence in medicine, life sciences and the humanities.

Publisher: The President of Goethe University
Editor: Dr. Anne Hardy, Science Communication Officer, Tel: +49(0)69 798-12498, Fax +49(0)69 798-761 12531, sauter@pvw.uni-frankfurt.de
Internet: www.uni-frankfurt.de

Dr. Anne Hardy | idw - Informationsdienst Wissenschaft

Further reports about: WWF bushmeat nature reserves

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>