Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How will ocean acidification impact marine life?

03.02.2015

A new analysis provides a holistic assessment of the impacts of climate change and ocean acidification on marine organisms including coral, shellfish, sea urchins, and other calcifying species.

Many marine organisms—such as coral, clams, mussels, sea urchins, barnacles, and certain microscopic plankton—rely on equilibrated chemical conditions and pH levels in the ocean to build their calcium-based shells and other structures. A new analysis published in the journal Environmental Science and Technology provides a holistic analysis of how species will be affected worldwide under different climate scenarios.


Coral is one of the key species threatened by ocean acidification.

© Rostislav Ageev | Dreamstime.com

“Calcifying species are indispensable for ecosystems worldwide: they provide nursery habitats for fish, food for marine predators, and natural defenses for storms and erosion. These species are also particularly vulnerable to ocean acidification triggered by increased fossil fuel emissions,” says IIASA researcher Ligia Azevedo, who led the study.

Just as carbonated soda water is more acidic than flat tap water, higher levels of carbon dioxide (CO2) in the ocean cause the water to become more acidic. And high acidity makes it more difficult for calcifying species to make their calcium structures such as shells, reefs, and exoskeletons.

“Previous studies have shown that marine species were being negatively affected by decreasing ocean pH levels. But until now most studies looked at individual species. This study is one of the first to analyze the impact on the whole community of calcifying species, while also looking at both pH levels and CO2 partial pressure,” says Azevedo.

The study examines the impact of increased ocean acidity on species growth, reproduction, and survival. It used two climate change scenarios from the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5): In the low emissions scenario, ocean pH is projected to decrease from 8.1 to 7.95, while in the high emissions scenario, median ocean pH is expected to decrease to 7.80. (Lower pH indicates higher acidity).

The analysis finds that under the high emissions scenario, between 21-32% of calcifying species would be significantly affected, based on a threshold of 10% of a species population being affected. In the low emissions scenario, only 7-12% of species would be affected.

Azevedo notes that while the study is an important new milestone for ocean acidification research, it does not show what level of impact which species population can handle, that is, how much acidification is too much.

“It’s hard to say what the level of impact would mean for different organisms – a 10% rate could be no problem for some species, but for other more sensitive species it could mean one step closer to local extinction,” explains Azevedo.

The study also emphasizes that much uncertainty remains about the level of acidification that would lead to major impacts on calcifying species – in part because of varying experimental results.

The researchers say that the analysis is an important step forward to provide policymakers a better understanding of the big picture of climate impacts on the ocean.

Azevedo says, “The main benefit of this study is to provide a new research framework that policymakers could use for climate policy planning, life cycle impact assessment, and environmental risk assessment.”

The study was funded in part by a grant from the European Research Council to explore the balance of carbon, phosphorus, and nitrogen in the environment.

Reference
Azevedo LB, Schryver AD, Hendriks AJ, and Huijbregts MAJ. 2015. Calcifying Species Sensitivity Distributions For Ocean Acidification. Environmental Science and Technology. doi:10.1021/es505485m http://pubs.acs.org/doi/full/10.1021/es505485m (Open Access)
Contacts

Ligia Azevedo
IIASA Ecosystems Services and Management Program
Tel: +43(0) 2236 807 550
azevedol@iiasa.ac.at

Katherine Leitzell
IIASA Press Office
Tel: +43 2236 807 316
Mob: +43 676 83 807 316
leitzell@iiasa.ac.at

About IIASA:
IIASA is an international scientific institute that conducts research into the critical issues of global environmental, economic, technological, and social change that we face in the twenty-first century. Our findings provide valuable options to policy makers to shape the future of our changing world. IIASA is independent and funded by scientific institutions in Africa, the Americas, Asia, Oceania, and Europe. www.iiasa.ac.at

Weitere Informationen:

http://pubs.acs.org/doi/full/10.1021/es505485m

Katherine Leitzell | idw - Informationsdienst Wissenschaft

More articles from Ecology, The Environment and Conservation:

nachricht Scientists on the road to discovering impact of urban road dust
18.01.2018 | University of Alberta

nachricht Gran Chaco: Biodiversity at High Risk
17.01.2018 | Humboldt-Universität zu Berlin

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>