Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Green Spaces Don't Ensure Biodiversity in Urban Areas

04.11.2014

University of Iowa study showed more trees did not correspond with more insects

Planting trees and creating green space in cities is good for attracting species, but it may not be enough to ensure biodiversity in built environments, a University of Iowa study has found.


Andrew Forbes lab, Univ. of Iowa

Green spaces in cities are great, but they don't ensure biodiversity, according to University of Iowa biologists. The team found insect abundance was lacking in two common urban trees, suggesting insect movement, such as the walnut fly, pictured above, may be limited by barriers, such as roads and buildings.

The researchers surveyed two types of tree in an urban area in Iowa, and recorded the abundance of two insects that interact with them. They found that while there were plenty of the trees, black cherry and black walnut, they didn’t find a corresponding abundance of the insects, in this case fruit flies that feed on the walnuts and black cherries and a type of wasp that feeds on the flies.

“In cities, you might have more trees, but you don’t necessarily have more insects associated with them,” says Andrew Forbes, associate professor of biology and an author on the paper, published online in the journal PLOS ONE. “There’s still this real impact on diversity that’s mediated by the landscape. This study implies that cities decrease diversity in some sort of fundamental, intrinsic way.”

Amanda Nelson, a graduate student in biology at the UI, led a team of a dozen UI undergraduates who surveyed 250 sites in Iowa City for black cherry and black walnut trees. At sites where the researchers found trees, they collected fruit and counted the fruit flies found in the walnuts and cherries. They also counted the parasitic wasps that feed on the flies at each site. Although the cherry and walnut trees were more common in urban sites, Nelson and her team found fewer flies and wasps in these locations than in agricultural or undeveloped sites.

The researchers believe that barriers found in urban landscapes, such as built structures and paved areas, may make it difficult, if not impossible, for the insects to reach other trees, mate with other populations and thus enrich the gene pool. Nelson is trying to determine which physical barriers have the greatest impact on the insects by currently comparing the DNA of flies across urban sites.

“We can model how they’re moving across the landscape and then compare that to the characteristics of landscapes that we think might be impeding them,” says Nelson, who earned undergraduate degrees in biology and environmental science at the UI and is the corresponding author on the paper.

While other studies have examined the density of a single insect species across a range of landscapes, no other study has examined insect interactions across such a broad area, says Forbes. Nelson and her team sampled tens of thousands of fruits and counted hundreds of thousands of insects during the survey, which lasted from 2011 to 2013.

“Planting a tree in the city is not sufficient to then have walnut flies and the wasps that attack those walnut flies,” says Forbes, who advised Nelson on the project. “We think there’s something about the city that changes those dynamics, those interactions between plants and flies and the insects that eat those flies.”

Despite this, Nelson thinks that finding ways for insects and people to share developed space is still an important goal to pursue.

“The responses of the diversity of organisms that could potentially share these developed areas with us can be really idiosyncratic. To promote the full diversity, we really have a lot to learn,” says Nelson, who’s from Exira, Iowa. “That doesn’t mean our efforts are wasted, but it definitely means that we need to continue trying to learn to do a better job and be thoughtful about it.”

The UI's Center for Global and Regional Environmental Research funded the work.

Contact Information
Richard Lewis
Director, Research News
richard-c-lewis@uiowa.edu
Phone: 319-384-0012
Mobile: 401-662-6336
Twitter: @UIowaResearch

Richard Lewis | newswise
Further information:
http://www.uiowa.edu

Further reports about: Biodiversity Green black cherry flies fruit flies insects interactions landscapes species

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>