Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Grasshoppers signal slow recovery of post-agricultural woodlands, study finds

25.11.2014

Sixty years ago, the plows ended their reign and the fields were allowed to return to nature -- allowed to become the woodland forests they once were.

But even now, the ghosts of land-use past haunt these woods. New research by Philip Hahn and John Orrock at the University of Wisconsin-Madison on the recovery of South Carolina longleaf pine woodlands once used for cropland shows just how long lasting the legacy of agriculture can be in the recovery of natural places.

By comparing grasshoppers found at woodland sites once used for agriculture to similar sites never disturbed by farming, Hahn and Orrock show that despite decades of recovery, the numbers and types of species found in each differ, as do the understory plants and other ecological variables, like soil properties. The findings were published today in the Journal of Animal Ecology.

While several studies have examined the recovery of plant species at such sites, this is the first to examine the impacts of historical agriculture on animals.

The findings have implications for conservationists, land-use planners, policymakers and land managers looking to prevent habitat destruction or promote ecological recovery of natural spaces. Hahn and Orrock suggest new strategies may be needed in these disturbed environments.

The findings also challenge conventional ecological wisdom, in ways the scientists did not expect.

"Ecologically, grasshoppers are at the heart of the food chain," says Hahn, a graduate student in Orrock's laboratory. Orrock is an associate professor in the Department of Zoology. "They eat the plants and then they're eaten by others: other insects, reptiles, birds."

Like the proverbial canary in the coal mine, the grasshoppers in the study served as a signal of the recovery of areas once used for agriculture. Building on past research that shows post-agricultural sites have poorer-quality soil and differences in the types of plant species that grow back, Hahn surveyed the plants, soil quality and grasshoppers found at 36 study sites.

He wanted to know whether earlier land use changed the numbers and types of grasshoppers found at each site and whether the relationships between the insects, plants and the environment were altered.

Sweeping through the plants in the understory with a tool called -- fittingly -- a sweep net, Hahn collected grasshoppers and recorded the types and numbers of those he found in both undisturbed and post-agricultural woodlands. He collected 459 of the hopping critters, representing numerous different types of grasshopper.

"The humble grasshopper, ubiquitous, yet cryptic," Orrock reflects; they're not as visible or well known as the popular deer.

The researchers found differences in the types of grasshoppers collected in each, related to the understory plants that grew and the hardness of the soil.

In remnant woodlands with no history of agriculture, more plant types equated to greater numbers of grasshoppers, an expected and traditional link between plants and the species that depend on them for food and shelter. This connection did not exist in areas once used as cropland, calling into question a long-held dogma of ecological relationships.

"It challenges what we know," Orrock says. "If it's true that the past influences ecological relationships in ways that we can't predict, then all bets are off."

The researchers say this is especially important as land use continues to change, with some areas of the U.S. converting wild spaces into new agricultural lands and others abandoning massive plots once used to grow food.

"We've wondered why it is -- 60 years after we've stopped plowing -- there are these legacy effects of land use on communities," says Orrock. "Why has what we did so long ago lasted? Why hasn't nature recovered?"

The boundaries can be so distinct in the woodlands they studied, he says, that it's easy to tell within four meters where the plowline once ended.

"It's remarkable how far the past reaches into the future," says Orrock.

The knowledge, the researchers say, presents opportunities to do better. For instance, Hahn believes new strategies can be tried, like reintroducing once-native plant species to abandoned sites earlier on, or proactively working on restoring the health of the soil. Conversely, more conservation and management efforts could be spent promoting less habitat degradation in the first place.

"Before the research started, we thought most bad things could be undone in a decade," Orrock says. "The good news is, at least we know where we are and it's a start. We know business as usual might not work."

The study was funded by the Strategic Environmental Research and Development Program, the United States Department of Agriculture Forest Service, and the UW-Madison Department of Zoology.

-- Kelly April Tyrrell, ktyrrell2@wisc.edu, 608-262-9772

CONTACT: Phil Hahn, 608-262-5868, pghahn@wisc.edu; John Orrock, 608-263-5134, jorrock@wisc.edu

Phil Hahn | EurekAlert!
Further information:
http://www.wisc.edu

Further reports about: agriculture ecological grasshoppers habitat insects land use plant species strategies woodlands

More articles from Ecology, The Environment and Conservation:

nachricht Listening in: Acoustic monitoring devices detect illegal hunting and logging
14.12.2017 | Gesellschaft für Ökologie e.V.

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

The body's street sweepers

18.12.2017 | Life Sciences

Fast flowing heat in layered material heterostructures

18.12.2017 | Materials Sciences

Life on the edge prepares plants for climate change

18.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>