Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

GPS transmitters can protect animals from poaching

10.08.2015

The case of Cecil shows: with the help of satellite transmitter systems, researchers can determine the cause of death of animals almost in real time

The killing of the lion Cecil in a national park in Zimbabwe by a big-game hunter has sparked worldwide outrage. Researchers at the University of Oxford had outfitted Cecil with a GPS collar to monitor his behaviour. It was only thanks to this special tag that the cause of the animal's death was cleared up. At the Max Planck Institute for Ornithology in Radolfzell, scientists also use transmitters to observe the behavior of different species of animals.


Cecil the Lion, in Hwange Nationalpark, Zimbabwe.

© WildCRU/Andrew Loveridge


This cuckoo, equipped with a five-gram mini data logger on its back, is transmitting its data every other day to a satellite for ten hours.

© Natural History Museum of Denmark/M. Willemoes

The data collected through telemetry is so accurate that it can help to quickly locate killed animals and clear up their cause of death. From 2016, the satellite-based system Icarus will also capture the global movement patterns of animals. Icarus will thus significantly improve the protection of endangered species.

The American big-game hunter's first attempt to kill the lion with a crossbow failed. Only after chasing the animal, and with the support of local trackers, he was finally able to kill the animal. According to the hobby hunter, he did not suspect that this was not just an "ordinary" animal. The movements of the big cat were monitored as part of a research project at the University of Oxford in the UK aimed at protecting wildlife populations. This is why Cecil wore a GPS collar that tracked and reported his locations, and the date of which ultimately led wildlife rangers to the hunter.

Scientists at the Max Planck Institute for Ornithology also study the behavior of animals with transmitters, which teach them a lot about the migratory movements and habitats of endangered species. But they also record the death of an animal. Dina Dechmann, for example, monitors the routes of pigeons. With the help of transmitters, she can determine where and when these birds fall victim to birds of prey.

"In the case of danger, risk-averse individuals first leave the swarm in order to escape. This makes them an easy target. In one case, we could tell through transmitters which we later found close to a falcon's nest that the birds were killed by a bird of prey and not shot by a hunter," reports Dechmann.

The same applies to studies of the bald ibis. Conservationists want to reintroduce this migratory bird, who was once native to Europe, to Austrian and Italian forests. Similar as in Cecil's case, scientists were able, through data loggers, to identify a hunter who had illegally shot such a bird.

In this way, scientists can also establish where and which migratory birds, such as songbirds or storks, are killed on their yearly travels. This is essential information for species protection. "The signals from the transmitters are so precise that we could even register where a shot mallard fell to Earth. So far, however, this is only a by-product of our research, "says Dechmann.

The position data is primarily used to investigate the behavior of the animals and their movement patterns. So far, researchers have been mainly interested in the causes of death in order to understand population fluctuations. "However, the data loggers may also be specifically used to reduce the hunting of endangered animals," said Dechmann.

Soon, scientists at the Max Planck Institute for Ornithology will have even more opportunities to track animals - through a satellite system. From 2016 onwards, under the guidance of Martin Wikelski, director at the Max Planck Institute in Radolfzell, the international consortium Icarus (International Cooperation for Animal Research Using Space) will globally monitor the movements of many animals at the same time. Solar powered GPS mini transmitters will be sending their data to the International Space Station and from there to research groups worldwide.

Icarus will not only deter potential poachers with its transmitters but, but also contribute to the protection of wildlife animals in other ways, with a lot of data being freely accessible. And the AnimalTracker app will enable everyone to participate in the project, upload their own wildlife observations and make them available to researchers.

"Thanks to Icarus, we can follow the lives of animals almost from the sofa. It strengthens our connection with them and thus hopefully also our appreciation of our fellow creatures," says Wikelski. While all of this is too late for Cecil, there is still hope for many other endangered animals. "With the data gained through Icarus, people can forge a personal relationship with wild animals similar to Cecil. I am sure that this global attention will protect many animals from illegal hunting, "said Wikelski.

Contact

Dr. Dina Dechmann
Max Planck Institute for Ornithology (Radolfzell), Radolfzell
Phone: +49 7732 150-173

Email: ddechmann@orn.mpg.de

Dr. Dina Dechmann | Max Planck Institute for Ornithology (Radolfzell), Radolfzell
Further information:
http://www.mpg.de/9356217/gps-animal-tracking-species-protection?filter_order=L&research_topic=

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>