Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

GPS transmitters can protect animals from poaching

10.08.2015

The case of Cecil shows: with the help of satellite transmitter systems, researchers can determine the cause of death of animals almost in real time

The killing of the lion Cecil in a national park in Zimbabwe by a big-game hunter has sparked worldwide outrage. Researchers at the University of Oxford had outfitted Cecil with a GPS collar to monitor his behaviour. It was only thanks to this special tag that the cause of the animal's death was cleared up. At the Max Planck Institute for Ornithology in Radolfzell, scientists also use transmitters to observe the behavior of different species of animals.


Cecil the Lion, in Hwange Nationalpark, Zimbabwe.

© WildCRU/Andrew Loveridge


This cuckoo, equipped with a five-gram mini data logger on its back, is transmitting its data every other day to a satellite for ten hours.

© Natural History Museum of Denmark/M. Willemoes

The data collected through telemetry is so accurate that it can help to quickly locate killed animals and clear up their cause of death. From 2016, the satellite-based system Icarus will also capture the global movement patterns of animals. Icarus will thus significantly improve the protection of endangered species.

The American big-game hunter's first attempt to kill the lion with a crossbow failed. Only after chasing the animal, and with the support of local trackers, he was finally able to kill the animal. According to the hobby hunter, he did not suspect that this was not just an "ordinary" animal. The movements of the big cat were monitored as part of a research project at the University of Oxford in the UK aimed at protecting wildlife populations. This is why Cecil wore a GPS collar that tracked and reported his locations, and the date of which ultimately led wildlife rangers to the hunter.

Scientists at the Max Planck Institute for Ornithology also study the behavior of animals with transmitters, which teach them a lot about the migratory movements and habitats of endangered species. But they also record the death of an animal. Dina Dechmann, for example, monitors the routes of pigeons. With the help of transmitters, she can determine where and when these birds fall victim to birds of prey.

"In the case of danger, risk-averse individuals first leave the swarm in order to escape. This makes them an easy target. In one case, we could tell through transmitters which we later found close to a falcon's nest that the birds were killed by a bird of prey and not shot by a hunter," reports Dechmann.

The same applies to studies of the bald ibis. Conservationists want to reintroduce this migratory bird, who was once native to Europe, to Austrian and Italian forests. Similar as in Cecil's case, scientists were able, through data loggers, to identify a hunter who had illegally shot such a bird.

In this way, scientists can also establish where and which migratory birds, such as songbirds or storks, are killed on their yearly travels. This is essential information for species protection. "The signals from the transmitters are so precise that we could even register where a shot mallard fell to Earth. So far, however, this is only a by-product of our research, "says Dechmann.

The position data is primarily used to investigate the behavior of the animals and their movement patterns. So far, researchers have been mainly interested in the causes of death in order to understand population fluctuations. "However, the data loggers may also be specifically used to reduce the hunting of endangered animals," said Dechmann.

Soon, scientists at the Max Planck Institute for Ornithology will have even more opportunities to track animals - through a satellite system. From 2016 onwards, under the guidance of Martin Wikelski, director at the Max Planck Institute in Radolfzell, the international consortium Icarus (International Cooperation for Animal Research Using Space) will globally monitor the movements of many animals at the same time. Solar powered GPS mini transmitters will be sending their data to the International Space Station and from there to research groups worldwide.

Icarus will not only deter potential poachers with its transmitters but, but also contribute to the protection of wildlife animals in other ways, with a lot of data being freely accessible. And the AnimalTracker app will enable everyone to participate in the project, upload their own wildlife observations and make them available to researchers.

"Thanks to Icarus, we can follow the lives of animals almost from the sofa. It strengthens our connection with them and thus hopefully also our appreciation of our fellow creatures," says Wikelski. While all of this is too late for Cecil, there is still hope for many other endangered animals. "With the data gained through Icarus, people can forge a personal relationship with wild animals similar to Cecil. I am sure that this global attention will protect many animals from illegal hunting, "said Wikelski.

Contact

Dr. Dina Dechmann
Max Planck Institute for Ornithology (Radolfzell), Radolfzell
Phone: +49 7732 150-173

Email: ddechmann@orn.mpg.de

Dr. Dina Dechmann | Max Planck Institute for Ornithology (Radolfzell), Radolfzell
Further information:
http://www.mpg.de/9356217/gps-animal-tracking-species-protection?filter_order=L&research_topic=

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>