Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Giammar Seeking New Solutions for Underground Carbon Storage

27.11.2014

Dan Giammar, PhD, at Washington University in St. Louis, is going deep into the earth to find a potential solution to store carbon emissions from coal-fired power plants.

Giammar, professor in energy, environmental & chemical engineering in the School of Engineering & Applied Science, has been working with the Consortium for Clean Coal Utilization (CCCU) since its inception to find ways to reuse or safely store emissions or waste from coal-fired power plants, including fly ash or carbon dioxide. This ties in well with his research, which focuses on chemical reactions that affect the outcome and transport of heavy metals and radionuclides in natural and engineered water systems.


Giammar

Scanning electron micrograph that illustrates the precipitation of magnesium carbonate (left side) on the surface of an artificial rock prepared by vacuum sintering of magnesium silicate. The precipitation occurred from the reaction of an aqueous solution equilibrated with a high pressure of carbon dioxide (100 times atmospheric) with the magnesium silicate.

In a new $1.28 million project funded by the U.S. Department of Energy, Giammar is looking at the potential for fractured basalt, a layer of common mineral-rich rock, to store carbon dioxide emissions. He and a team of researchers will work with finger-sized basalt samples in the lab to see how the rock tolerates the transport of carbon dioxide and the chemical reactions that take place among the rock’s natural minerals and the carbon dioxide.

Geologic carbon sequestration, also known as carbon capture and storage, requires deep underground storage that includes porous open space, a permeable material and an impermeable cap so that the CO2 doesn’t leak out. Many current methods of geologic carbon sequestration use sandstone, an abundant porous and permeable material. But CO2 remains as a separate phase of either a gas or supercritical fluid within sandstone, creating the potential for leaks.

However, when CO2 is injected into basalt through the rock’s fractures, which are naturally created cracks caused by high pressure or temperatures, it reacts with the calcium, magnesium and iron within the basalt to create carbonate minerals, a solid product without potential to leak.

Giammar said there are three potential outcomes to this process.

“As you convert the minerals and basalt into carbonate minerals, there is a volume expansion, so you could fill up the fractures and seal off the system from further reactions, making it self-limiting, which is the worst-case scenario,” he said. “The best-case scenario would be that this volume expansion starts to exert stresses on the rocks and opens up new fractures, so it could be self-propagating.”

But, he said, there could also be something in between, with some fracturing of rocks and some filling or partial filling of prior fractures.

“We’ve got a whole range of possibilities,” he said. “We don’t really know the answer to this. Whether or not basalts will be tenable formations for sequestration is critical.”

Giammar will be working with Washington University colleagues Mark Conradi, PhD, professor of physics; Sophia Hayes, PhD, associate professor of chemistry; and Philip Skemer, PhD, assistant professor of earth & planetary sciences, all colleagues from previous CCCU-supported research projects, as well as with Brian Ellis, assistant professor of civil and environmental engineering at the University of Michigan.

Conradi and Hayes will apply their expertise in nuclear magnetic resonance (NMR), which allows researchers to look at chemical reactions as they occur in real time at high temperatures and pressures similar to those that occur inside the earth to measure the progress. Skemer, an expert in the physical properties of rock, will create artificial basalt in the lab to be used alongside the natural basalt fragments. Ellis specializes in building reactors that supply a confining pressure to rocks and push fluids up through them.

Giammar also has completed three prior research projects in collaboration with the CCCU. One looked at the rates of reactions of CO2, minerals and water. The second was a steppingstone to the current project, looking at the transport and reactions of CO2, minerals and water, but using powder instead of rocks, and the third studied the fate of metals in fly ash from coal combustion.

In addition to the research collaborations with colleagues at WUSTL, Giammar has developed an international collaboration with Anurag Mehra, PhD, and graduate students at the Indian Institute of Technology (IIT) Bombay.

“They look at the same types of systems but at lower pressures and have done some nice parallel experiments,” Giammar said. “The project has benefited from this international collaboration.”

Beth Miller | newswise

More articles from Ecology, The Environment and Conservation:

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>