Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dry future climate could reduce orchid bee habitat

20.03.2014

During Pleistocene era climate changes, neotropical orchid bees that relied on year-round warmth and wet weather found their habitats reduced by 30 to 50 percent, according to a Cornell University study that used computer models and genetic data to understand bee distributions during past climate changes.

In previous studies, researchers have tracked male and female orchid bees and found that while females stay near their nests, male orchid bees travel, with one study concluding they roam as far as 7 kilometers per day. These past findings, corroborated by genetic data in the current study, reveal that males are more mobile than females.

The study, published online in the journal Molecular Ecology, has important implications for future climate changes.

“The dataset tells us that if the tendency is to have lower precipitation in combination with deforestation, the suitable habitat for the bees is going to be reduced,” said Margarita López-Uribe, the paper’s first author and a graduate student at Cornell.

The good news is that since male orchid bees habitually travel far, they can keep bee populations connected and healthy.

“The males are mediating genetic exchange among populations, maintaining connectivity in spite of fragmentation of habitats,” said López-Uribe. “This is a possible mechanism bees could use to ameliorate the negative impacts of population isolation resulting from future climate changes and deforestation.”

By looking at current climate and bee distributions, López-Uribe and colleagues assessed parameters of climate conditions that each of three bee species within the genus Eulaema could tolerate physiologically, including temperature and precipitation variability. She found that one of the three species, Eulaema cingulata, was three times more tolerant to a variety of climatic conditions.

By proceeding with the caveat that physiological tolerance has remained constant – species tend to be evolutionarily conservative about shifting their niches – the researchers used computer models to simulate past bee distributions based on climate conditions in the Pleistocene. The results showed that in the past, during periods when the neotropics had lowered precipitation, each species experienced significant reduction in suitable habitat, with E. cingulata maintaining the largest geographical ranges.

Climate and ecological niche computer model simulations were closely matched by genetic data of the two less-tolerant orchid bee species. The genetic data included mitochondrial markers, which are only inherited from females, and nuclear markers, which come from males and females. The mitochondrial DNA showed that individual bees in one geographic area were more closely related to each other than to bees from other areas. The findings suggest the maternal lines of these bees remained in the area and shared the same pools of DNA over time. But the bi-parental nuclear DNA showed more variation between individuals within an area, offering evidence that males traveled and shared their DNA with other regional groups.

Orchid bees live in the neotropics, an ecozone that includes part of South and Central America, the Mexican lowlands and the Caribbean islands. They are one of the most important pollinators, visiting many types of plants, including some 700 species of orchids that are exclusively pollinated by these bees.

The study was funded by the Organization of Tropical Studies, Grace Griswold Endowment, Mario Einaudi Center for International Studies, Lewis and Clark Exploration Fund, Explorer’s Club Exploration Fund and the National Science Foundation. 

Cornell University has television, ISDN and dedicated Skype/Google+ Hangout studios available for media interviews.

Melissa Osgood | EurekAlert!
Further information:
http://mediarelations.cornell.edu/2014/03/19/dry-future-climate-could-reduce-orchid-bee-habitat/

Further reports about: Climate DNA Ecology Exploration Molecular habitat mitochondrial species

More articles from Ecology, The Environment and Conservation:

nachricht Treating ships’ ballast water: filtration preferable to disinfection
30.07.2015 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Are Fish Getting High on Cocaine?
28.07.2015 | McGill University

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

Im Focus: Simulations lead to design of near-frictionless material

Argonne scientists used Mira to identify and improve a new mechanism for eliminating friction, which fed into the development of a hybrid material that exhibited superlubricity at the macroscale for the first time. Argonne Leadership Computing Facility (ALCF) researchers helped enable the groundbreaking simulations by overcoming a performance bottleneck that doubled the speed of the team's code.

While reviewing the simulation results of a promising new lubricant material, Argonne researcher Sanket Deshmukh stumbled upon a phenomenon that had never been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Surprising similarity in fly and mouse motion vision

30.07.2015 | Life Sciences

Efficient Infrared Heat Saves Time and Energy in the Manufacture of Motor Vehicle Carpets

30.07.2015 | Trade Fair News

Roentgen prize goes to Dr Eleftherios Goulielmakis

30.07.2015 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>