Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dry future climate could reduce orchid bee habitat

20.03.2014

During Pleistocene era climate changes, neotropical orchid bees that relied on year-round warmth and wet weather found their habitats reduced by 30 to 50 percent, according to a Cornell University study that used computer models and genetic data to understand bee distributions during past climate changes.

In previous studies, researchers have tracked male and female orchid bees and found that while females stay near their nests, male orchid bees travel, with one study concluding they roam as far as 7 kilometers per day. These past findings, corroborated by genetic data in the current study, reveal that males are more mobile than females.

The study, published online in the journal Molecular Ecology, has important implications for future climate changes.

“The dataset tells us that if the tendency is to have lower precipitation in combination with deforestation, the suitable habitat for the bees is going to be reduced,” said Margarita López-Uribe, the paper’s first author and a graduate student at Cornell.

The good news is that since male orchid bees habitually travel far, they can keep bee populations connected and healthy.

“The males are mediating genetic exchange among populations, maintaining connectivity in spite of fragmentation of habitats,” said López-Uribe. “This is a possible mechanism bees could use to ameliorate the negative impacts of population isolation resulting from future climate changes and deforestation.”

By looking at current climate and bee distributions, López-Uribe and colleagues assessed parameters of climate conditions that each of three bee species within the genus Eulaema could tolerate physiologically, including temperature and precipitation variability. She found that one of the three species, Eulaema cingulata, was three times more tolerant to a variety of climatic conditions.

By proceeding with the caveat that physiological tolerance has remained constant – species tend to be evolutionarily conservative about shifting their niches – the researchers used computer models to simulate past bee distributions based on climate conditions in the Pleistocene. The results showed that in the past, during periods when the neotropics had lowered precipitation, each species experienced significant reduction in suitable habitat, with E. cingulata maintaining the largest geographical ranges.

Climate and ecological niche computer model simulations were closely matched by genetic data of the two less-tolerant orchid bee species. The genetic data included mitochondrial markers, which are only inherited from females, and nuclear markers, which come from males and females. The mitochondrial DNA showed that individual bees in one geographic area were more closely related to each other than to bees from other areas. The findings suggest the maternal lines of these bees remained in the area and shared the same pools of DNA over time. But the bi-parental nuclear DNA showed more variation between individuals within an area, offering evidence that males traveled and shared their DNA with other regional groups.

Orchid bees live in the neotropics, an ecozone that includes part of South and Central America, the Mexican lowlands and the Caribbean islands. They are one of the most important pollinators, visiting many types of plants, including some 700 species of orchids that are exclusively pollinated by these bees.

The study was funded by the Organization of Tropical Studies, Grace Griswold Endowment, Mario Einaudi Center for International Studies, Lewis and Clark Exploration Fund, Explorer’s Club Exploration Fund and the National Science Foundation. 

Cornell University has television, ISDN and dedicated Skype/Google+ Hangout studios available for media interviews.

Melissa Osgood | EurekAlert!
Further information:
http://mediarelations.cornell.edu/2014/03/19/dry-future-climate-could-reduce-orchid-bee-habitat/

Further reports about: Climate DNA Ecology Exploration Molecular habitat mitochondrial species

More articles from Ecology, The Environment and Conservation:

nachricht Saving coral reefs depends more on protecting fish than safeguarding locations
03.09.2015 | Wildlife Conservation Society

nachricht Seabird SOS
01.09.2015 | University of California - Santa Barbara

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer ISE Develops Highly Compact Inverter for Uninterruptible Power Supplies

Silicon Carbide Components Enable Efficiency of 98.7 percent

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE have developed a highly compact and efficient inverter for use in uninterruptible power...

Im Focus: How wind sculpted Earth's largest dust deposit

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from University of Arizona geoscientists. The study is the first to explain how the steep-fronted plateau formed.

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from...

Im Focus: An engineered surface unsticks sticky water droplets

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets still stick to them. Now, Penn State researchers have developed nano/micro-textured, highly slippery surfaces able to outperform these naturally inspired coatings, particularly when the water is a vapor or tiny droplets.

Enhancing the mobility of liquid droplets on rough surfaces could improve condensation heat transfer for power-plant heat exchangers, create more efficient...

Im Focus: Increasingly severe disturbances weaken world's temperate forests

Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades.

"While we have been trying to manage for resilience of 20th century conditions, we realize now that we must prepare for transformations and attempt to ease...

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Together - Work - Experience

03.09.2015 | Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

 
Latest News

Saving coral reefs depends more on protecting fish than safeguarding locations

03.09.2015 | Ecology, The Environment and Conservation

Research team from Münster develops innovative catalytic chemistry process

03.09.2015 | Life Sciences

Together - Work - Experience

03.09.2015 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>