Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dominant ant species significantly influence ecosystems

01.02.2016

Studies in tropical rainforests indicate that often single ant species cause the majority of resource consumption / Large differences between day and night

Ants and humans represent approximately the same amount of biomass on our planet. Together with other social insects, ants make up a third of the entire animal biomass in the tropics and hence have a major effect on their ecosystems.


An acrobat ant (Crematogaster modiglianii) transporting a plant seed (Malaysia, Borneo)

photo/©: Florian Menzel


Two ant species Crematogaster levior (left) and Ectatomma tuberculatum (right) tending plant-sucking cicada larvae (French Guiana)

photo/©: Florian Menzel

Researchers at Johannes Gutenberg University Mainz (JGU) investigated the role of different ant species in various ecosystem processes in tropical rain forests. They discovered that the dominant role is often played by only a few or even a single ant species when it comes to consuming food resources, something that can make an ecosystem vulnerable.

Researchers working with Dr. Florian Menzel of the JGU Institute of Zoology have identified ant species in the forests of Borneo that are extremely efficient and exploit the major proportion of the food resources available. This is the first time that biologists quantified resource consumption by ants in the field and differentiated between diurnal and nocturnal ant communities.

The stability of an ecosystem depends on various factors, such as whether and how fast a system can return to its original state after disturbance. The capacity of an ecosystem to cope with the loss of species also contributes to its stability.

How ecosystem stability is affected by anthropogenic loss of biodiversity has been extensively studied in the past years. Generally, a high biodiversity leads to a high stability of the ecosystem. However, how tight this relation is and which other factors influence it often remains unknown.

The Mainz-based biologists conducted their research in two forests each in French Guiana (South America) and in Borneo (Southeast Asia). They set up 64 collection points in each forest where they provided natural food sources, which included living insects of various sizes, dead insects, sugars that occur in sweet fruit and nectar as well as sugars that occur in honeydew produced by aphids.

"We analyzed which ant species went to which food types and then measured the extent to which each species contributed to its consumption," explained Menzel. "This enabled us to calculate the stability of the system."

Diversity and stability are often lower at night

The tropics harbor an enormous biodiversity, often with more than 100 ant species in just one hectare of forest. Some are only active during the day, others only at night. Whether a species is diurnal, nocturnal, or both can have considerable influence on the stability of an ecosystem. If certain species are only active during the day and others only at night, this increases the overall stability of the ecosystem.

The researchers of Mainz University discovered that, in some forests, species richness and stability are significantly lower at night compared to daytime. They also showed that very high food turnover was only achieved when 'high-performance ants' were present, but not when many less efficient species equally contributed to food consumption. In Borneo, the most active ant species in the study areas accounted for more than half of the overall food consumption.

"These highly efficient species can dominate the entire system in some forests. They increase temporary resource turnover, but make the system more vulnerable because other species cannot compensate their performance if their numbers diminish," Menzel added. This finding is particularly important because ants play a major role in many ecosystem processes. For example, they help to break down dead animal biomass, consume seeds, and prey on other insects.

In the future, the JGU-based evolutionary biologists plan to further study this phenomenon to find out what exactly makes these efficient species so efficient. The responsible factors may be higher food specialization, the ability to quickly discover food, or morphological aspects. Whatever the causes, it has now become apparent that it is essential to bear in mind that ecosystem processes differ between day and night, such that it is necessary to investigate the stability of an ecosystem at multiple times of day.

Photos:
http://www.uni-mainz.de/bilder_presse/10_zoologie_ameisen_tropen_01.jpg
An acrobat ant (Crematogaster modiglianii) transporting a plant seed (Malaysia, Borneo)
photo/©: Florian Menzel

http://www.uni-mainz.de/bilder_presse/10_zoologie_ameisen_tropen_02.jpg
Two ant species Crematogaster levior (left) and Ectatomma tuberculatum (right) tending plant-sucking cicada larvae (French Guiana)
photo/©: Florian Menzel

http://www.uni-mainz.de/bilder_presse/10_zoologie_ameisen_tropen_03.jpg
Fungus-growing ants of the genus Cyphomyrmex retrieve flower petals to serve as a substrate for their fungus (French Guiana)
photo/©: Florian Menzel

Publication:
Mickal Houadria et al.
The relation between circadian asynchrony, functional redundancy and trophic performance in tropical ant communities
Ecology , 29 January 2016
DOI: 10.1890/14-2466.1
http://www.esajournals.org/doi/abs/10.1890/14-2466.1

Further information:
Dr. Florian Menzel
Evolutionary Biology
Institute of Zoology
Johannes Gutenberg University Mainz (JGU)
55099 Mainz, GERMANY
phone +49 6131 39-27848
fax +49 6131 39-27850
E-mail: menzelf@uni-mainz.de
http://www.bio.uni-mainz.de/zoo/evobio/73_ENG_HTML.php
http://www.bio.uni-mainz.de/zoo/evobio/index_ENG.php

Weitere Informationen:

http://www.bio.uni-mainz.de/zoo/evobio/index_ENG.php – Evolutionary Biology Group at Mainz University

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>