Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CU study: Fires, drought in changing climate affecting high-altitude forests

22.03.2016

Large, severe fires in the West followed by increasing drought conditions as the planet warms are leading to lower tree densities and increased patchiness in high-elevation forests, according to a new study involving the University of Colorado Boulder.

For the study the team looked at nearly 200 subalpine forest plots that had undergone severe fires between 1994 and 2003 in and around Yellowstone National Park and Glacier National Park in Wyoming and Montana, said CU-Boulder postdoctoral researcher Brian Harvey.


CU-Boulder postdoctoral researcher Brian Harvey is collecting data on burn measurements and post-fire tree seedlings in a burned forest just outside of Yellowstone National Park.

Credit: Brooke Weiland

Subalpine forest regions in the West are the dense forests just downslope from the alpine tundra, said Harvey of CU-Boulder's geography department who led the study while a graduate student at the University of Wisconsin-Madison.

The researchers found that the rate of post-fire tree seedling establishment decreased substantially with greater post-fire drought severity. Seedling establishment also decreased when the seed sources were at greater distances from the edge of burn patches, he said.

The team also found evidence that tree species from warmer and drier climates at lower elevations may colonize burned areas in subalpine forests as temperatures climb, but at rates lower than the decrease of current subalpine tree species, Harvey said.

"This study is a crystal ball of sorts that helps us to see what forest recovery may look like in the future following severe fires," he said. "These forests are well adapted to severe fires, but the net result of larger fires and warmer temperatures will likely be a decrease in tree density, a reduction in forest extent, and more forest patchiness in high-elevation areas."

A paper on the subject was published online in Global Ecology and Biogeography. Co-authors on the study include biologist Daniel Donato of the Washington State Department of Natural Resources in Olympia and Professor Monica Turner of the University of Wisconsin-Madison.

The team measured tree species, numbers, sizes and ages of post-fire tree seedlings in the high-altitude forest plots. They also measured the distance between each plot -- which were roughly 100 feet in diameter -- to the nearest tree seed sources, as well as charting drought severity in the three years following severe fires.

Each study plot was located in areas of severe wildfires that burned in 1994, 1999, 2000 and 2003, times of widespread fire across the Northern Rockies, said Harvey.

"Over the next century, large fire years followed by droughts at least as severe as those seen in recent decades will likely become a more regular occurrence in the U.S. Northern Rockies," the authors wrote in Global Ecology and Biogeography.

Temperatures in the West have risen 2 to 3 degrees Fahrenheit in recent decades, which climate scientists attribute in large part to rising greenhouse gases in Earth's atmosphere as a result of human activity.

Seedlings of Engelmann spruce and subalpine fir, two common subalpine trees, decreased substantially in high elevations when coupled with fire and drought. But a third major subalpine species, lodgepole pine, was less affected, in part because of the abundant seeds stored in its cones that are released after fire events, said Harvey.

High-elevation forests in the western U.S. also can host Douglas fir, quaking aspen, western larch and whitebark pine. Both Yellowstone and Glacier have large amounts of of federally protected land, much of it wilderness, that allows natural tree regeneration after fires and makes the subalpine zone a living lab of sorts for researchers, he said.

"Data showing how forests may or may not recover following future fires in a warmer climate is extremely hard to get," said Harvey. "Our approach was to look at recent fires that were followed by a range of climate conditions, with the warmer/dryer scenario the most likely window into what we might expect in the future.

"When we were collecting data for this study, we essentially were walking around on the front lines of climate change," said Harvey.

###

The study was funded in part by the U.S. Joint Fire Science Program and the National Park Service. The study involved undergraduates, graduate students, postdoctoral researchers and faculty.

Contact:

Brian Harvey, 650-521-1988
brianjamesharvey@gmail.com

Jim Scott, CU-Boulder media relations, 303-492-3114
jim.scott@colorado.edu

http://www.colorado.edu/news 

Brian Harvet | EurekAlert!

Further reports about: Fires Glacier Global Ecology Rockies Yellowstone changing climate forests species tree species

More articles from Ecology, The Environment and Conservation:

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Using drones to estimate crop damage by wild boars
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Gecko adhesion technology moves closer to industrial uses

13.12.2017 | Information Technology

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure

13.12.2017 | Physics and Astronomy

Research reveals how diabetes in pregnancy affects baby's heart

13.12.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>