Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Consider the Invader: Minor Differences May Have Major Impact

11.12.2014

The interaction between invasive species may have a significant effect on affected native species

The effect of invasive species on native species can be profound, yet very little is known about the complex interaction between the invaders and the native species, or, perhaps more importantly, between multiple invaders and native species.


L. Burlakova

Quagga mussel on unionid (top); zebra mussel on unionid (bottom

In a research paper “Complex replacement of invasive congeners may relax impact on native species: interactions among zebra, quagga, and native unionid mussels,” lead author Lyubov E. Burlakova, research scientist with the Great Lakes Center at SUNY Buffalo State discusses the importance of understanding those interactions. The study was published online in PLOS ONE on December 9, 2014.

The study, which was funded by the U.S. Fish and Wildlife Service via the Great Lakes Fish and Wildlife Restoration Act, focused on the impact of the invasion of Dreissena polymorpha, the zebra mussel, and Dreissena rostriformis bugensis, the quagga mussel, on native mussels. Both zebra and quagga mussels invaded the Great Lakes at the same time.

“Our findings strongly suggest that that the effect of different species is much stronger than the effect of time since the invasion on the level of unionid infestation,” said Burlakova. The freshwater bivalves of the family Unionidae—the family to which native mussels belong in the bodies of water studied—declined sharply after the Dreissena invasion. This effect was first detected in the late 1980s.

Although there had been a strong decline in diversity and abundance of unionids before the Dreissena invasion due to habitat destruction and deterioration of water quality, the appearance of Dreissena accelerated that decline dramatically. For example, the number of native unionid species dropped from 18 to 5 in Lake St. Clair after zebra mussel invasion.

To evaluate the effect of both dreissenid species on unionids in the lower Great Lakes region after 25 years of invasion, researchers analyzed data on more than 4,000 unionids from 26 species that were collected at multiple sites in lakes Erie, Ontario and St. Clair, the Detroit River, and inland lakes in Michigan in 2011–2012. Infestation was measured by examining unionids to see if either zebra or quagga mussels were attached to them or had been attached previously. The presence of connecting threads—protein threads called byssal threads— indicated earlier infestation.

The most important finding was that despite the many similarities between Dreissena species, quagga mussels infested unionids less severely than zebra mussels. Therefore ongoing replacement of zebra with quagga mussels in the Great Lakes Region relaxes Dreissena impact on native unionids. Infestation, or the number of dreissenids attached to native unionids, had declined by 2011–2012 in lakes dominated by quagga mussels to almost one-tenth of the numbers found in the 1990s. In contrast, unionids are still heavily infested in waterbodies dominated by zebra mussels.

The research study considered both life history and ecological traits of unionid species, and found no significant difference in infestation among them. This suggests that susceptibility to infestation among native mussels was not a significant predictor of the impact of a Dreissena invasion.

Instead, the study suggests that biological differences between these two notorious closely related invasive species that are generally perceived as minor, such as the synthesis rate and attachment strength of the threads used by Dreissena to attach themselves to native unionids, can drive profound differences in environmental impacts on native communities they invade.

Contact Information
Mary Durlak
Senior Writer
durlakma@buffalostate.edu
Phone: 716-878-3517

Mary Durlak | newswise
Further information:
http://www.buffalostate.edu

Further reports about: Great Lakes Wildlife invasive invasive species mussels native species quagga mussels species zebra

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>