Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cleaning waste water effectively

30.05.2017

Water is vital – therefore, waste water has to be cleaned as efficiently as possible. Ceramic membranes make this possible. Researchers from the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Hermsdorf, Germany were able to significantly reduce the separation limits of these membranes and to reliably filter off dissolved organic molecules with a molar mass of only 200 Dalton. Even industrial sewage water can thus be cleaned efficiently.

Anyone who has dragged himself along a sunny coastal path at the height of summer with too little water in his bag knows all too well: without water, we cannot make it too long. Water is one of the foundations of life. In industry water is a must, as well: in many production processes, it serves as a solvent, detergent, to cool or to transfer heat.


© Photo Fraunhofer IKTS

Ceramic membranes by the Fraunhofer Institute for Ceramic Technologies and Systems IKTS.

As more and more water is consumed, waste water has to be treated and reused. Ceramic membranes offer a good way to do this: since they are separated mechanically – similar to a coffee filter – they are particularly energy-efficient. However, this method reviously came to an end when a molecular size of 450 Daltons was reached: smaller molecules could not be separated with ceramic membranes. According to experts, it was even considered impossible to go below this limit.

For the first time, molecules as small as 200 Daltons can be separated

Dr. Ingolf Voigt, Dr.-Ing. Hannes Richter and Dipl.-Chem. Petra Puhlfuerss from the Fraunhofer IKTS have achieved the impossible. "With our ceramic membranes, we achieve, for the first time, a molecular separation limit of 200 Daltons – and, thereby, a whole new quality," says Voigt, Deputy Institute Director of the IKTS and Site Manager in Hermsdorf.

But how did the researchers manage to do this? On the way to making the impossible possible, it was first necessary to overcome various obstacles. The first was in the production of the membrane itself: if such small molecules were to be separated reliably, a membrane was needed that had pores smaller than the molecules which were to be separated.

In addition, all of the pores had to be as similar in size as possible, since a single larger opening is sufficient to allow molecules to slip through. The challenge was therefore to produce pores which were as small as possible, with all of them having more or less the same size. "We achieved these results by refining sol-gel technology says Richter, Head of Department at the IKTS. The second hurdle was to make such membrane layers defect-free over larger surfaces.

The Fraunhofer researchers have succeeded in doing this, as well. "Whereas only a few square centimeters of surface are usually coated, we equipped a pilot system with a membrane area of 234 square meters, which means that our membrane is several magnitudes larger," explains Puhlfuerss, scientist at the IKTS.

Transfer from the laboratory into practice

Commissioned by Shell, the pilot system was built by the company Andreas Junghans – Anlagenbau und Edelstahlbearbeitung GmbH & Co. KG in Frankenberg, Germany and is located in Alberta, Canada. The system has been successfully purifying waste water since 2016, which is used for the extraction of oil from oil sand. The researchers are currently planning an initial production facility with a membrane area of more than 5,000 square meters.

The innovative ceramic membranes also offer advantages in industrial production processes: they can be used to purify partial currents directly in the process as well as to guide the cleaned water in the cycle, which saves water and energy.

For the development of the ceramic nanofiltration membrane, Dr. Ingolf Voigt, Dr.-Ing. Hannes Richter and Dipl.-Chem. Petra Puhlfuerss have received this year’s Joseph-von-Fraunhofer award. The jury justifies the award by mentioning, among other things "the first-ever implementation for filtration applications within this material class."

Weitere Informationen:

https://www.ikts.fraunhofer.de/en/press_media/press_releases/17_05_cleaning_wast...

Dipl.-Chem. Katrin Schwarz | Fraunhofer-Institut für Keramische Technologien und Systeme IKTS

More articles from Ecology, The Environment and Conservation:

nachricht Scientists on the road to discovering impact of urban road dust
18.01.2018 | University of Alberta

nachricht Gran Chaco: Biodiversity at High Risk
17.01.2018 | Humboldt-Universität zu Berlin

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>