Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cities can cut greenhouse gas emissions far beyond their urban borders

07.11.2017

Greenhouse gas emissions caused by urban households’ purchases of goods and services from beyond city limits are much bigger than previously thought. These upstream emissions may occur anywhere in the world and are roughly equal in size to the total emissions originating from a city’s own territory, a new study shows. This is not bad news but in fact offers local policy-makers more leverage to tackle climate change, the authors argue in view of the UN climate summit COP23 that just started.

They calculated the first internationally comparable greenhouse gas footprints for four cities from developed and developing countries: Berlin, New York, Mexico City, and Delhi. Contrary to common beliefs, not consumer goods like computers or sneakers that people buy are most relevant, but housing and transport – sectors that cities can substantially govern.


Global reach of urban GHG footprints. The four maps show the spatial distribution of the cities’ non-domestic upstream household GHG emissions. Maps are based on http://naturalearthdata.com/

Peter-Paul Pichler/PIK

“It turns out that the same activities that cause most local emissions of urban households – housing and transport – are also responsible for the majority of upstream emissions elsewhere along the supply chain,” says lead-author Peter-Paul Pichler from the Potsdam Institute for Climate Impact Research (PIK).

“People often think that mayors cannot do much about climate change since their power is restricted to city limits, but their actions can have far-reaching impacts. The planned emission reductions presented so far by national governments at the UN summit are clearly insufficient to limit global warming to well below 2 degrees Celsius, the target agreed by 190 countries, therefore additional efforts are needed.”

Housing and transport cause most city emissions, locally but also upstream

Cement and steel used for buildings take a huge amount of energy – typically from fossil fuels - to be produced, for instance. If a city instead chooses to foster low carbon construction materials this can drastically reduce its indirect CO2 emissions.

Even things that cities are already doing can affect far-away emissions. Raising insulation standards for buildings for example certainly slashes local emissions by reducing heating fuel demand. Yet it can also turn down the need for electric cooling in summer which reduces power generation and hence greenhouse gas emissions in some power plant beyond city borders.

In transport, expanding public facilities can minimize local emissions from car traffic. This reduces the number of cars that need to be built somewhere else, using loads of energy. So this is a win-win. But, again, more can be done. Cities can decide from which sources they procure the power needed to run, for instance, their subway trains or electric buses. By choosing energy from solar or wind, city governments could in fact close down far-away coal-fired power plants.

Comparison of New York, Berlin, Mexico City, Delhi – applicable to cities across the world

Interestingly, while the greenhouse gas footprint in the four cities that the scientists scrutinized range from 1.9 (Delhi) to 10.6 tons (New York) of CO2 equivalent per person and year, the proportions of local to upstream household emissions as well as the relative climate relevance of housing and transport turn out to be roughly the same. The international reach of upstream emissions is vast but varies.

In terms of emissions, Berlin’s global hinterland is largest, with more than half of its upstream emissions occurring outside of Germany, mostly in Russia, China and across the European Union. But also around 20% of Mexico City’s considerably smaller upstream emissions occur outside Mexico, mainly in the US and China.

“Measuring indirect emissions of urban populations so far has often been considered to be unfeasible, at least in a way that makes it possible to compare different cities,” says Helga Weisz, senior author of the study and a research domain co-chair at PIK. “We show that it is possible, but you have to invest the effort to actually do it.”

Her team analyzed huge amounts of existing data on economic input and output of different regions and successfully combined these with data on emission intensity of production in a lot of different sectors. The methodology that the scientists put together is in principle applicable in any place, enabling more effective collaboration between cities to reduce greenhouse gas emission footprints.

“The power of cities, open interconnected systems of great density, to tackle climate change even in times of uncertainty on the national and international level has been underestimated by both many local decision-makers and most of the international community,” says Weisz. “Cities must be encouraged and enabled to focus on their full emission spectrum – local and upstream– as they continue to develop their climate mitigation plans.”

Article: Peter-Paul Pichler, Timm Zwickel, Abel Chavez, Tino Kretschmer, Jessica Seddon, Helga Weisz (2017): Reducing Urban Greenhouse Gas Footprints. Scientific Reports [DOI 10.1038/s41598-017-15303-x]

Weblink to article: http://www.nature.com/articles/s41598-017-15303-x

For further information please contact:
PIK press office
Phone: +49 331 288 25 07
E-Mail: press@pik-potsdam.de
Twitter: @PIK_Climate

www.pik-potsdam.de

Weitere Informationen:

http://www.nature.com/articles/s41598-017-15303-x

Mareike Schodder | Potsdam-Institut für Klimafolgenforschung

More articles from Ecology, The Environment and Conservation:

nachricht Reducing manure and fertilizers decreases atmospheric fine particles
30.10.2017 | Max-Planck-Institut für Chemie

nachricht Flagship species could help protect freshwaters
26.10.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

Im Focus: Support Free with “TwoCure” – Innovation in Resin-Based 3D Printing

The Fraunhofer Institute for Laser Technology ILT and Rapid Shape GmbH are working together to further develop resin-based 3D printing. The new “TwoCure” process requires no support structures and is significantly more efficient and productive than conventional 3D printing techniques for plastic components. Experts from Fraunhofer ILT will be presenting the state-funded joint development that makes use of the interaction of light and cold in forming the components at formnext 2017 from November 14 to 17 in Frankfurt am Main.

Much like stereolithography, one of the best-known processes for printing 3D plastic components works using photolithographic light exposure that causes liquid...

Im Focus: Researchers develop chip-scale optical abacus

A team of researchers led by Prof. Wolfram Pernice from the Institute of Physics at Münster University has developed a miniature abacus on a microchip which calculates using light signals. With it they are paving the way to the development of new types of computer in which, as in the human brain, the computing and storage functions are combined in one element.

Researchers at the universities of Münster, Exeter and Oxford have developed a miniature “abacus” which can be used for calculating with light signals. With it...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

 
Latest News

Need entangled atoms? Get 'Em FAST! with NIST's new patent-pending method

08.11.2017 | Physics and Astronomy

New approach uses light instead of robots to assemble electronic components

08.11.2017 | Information Technology

Tracking down the origins of gold

08.11.2017 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>