Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cities can cut greenhouse gas emissions far beyond their urban borders

07.11.2017

Greenhouse gas emissions caused by urban households’ purchases of goods and services from beyond city limits are much bigger than previously thought. These upstream emissions may occur anywhere in the world and are roughly equal in size to the total emissions originating from a city’s own territory, a new study shows. This is not bad news but in fact offers local policy-makers more leverage to tackle climate change, the authors argue in view of the UN climate summit COP23 that just started.

They calculated the first internationally comparable greenhouse gas footprints for four cities from developed and developing countries: Berlin, New York, Mexico City, and Delhi. Contrary to common beliefs, not consumer goods like computers or sneakers that people buy are most relevant, but housing and transport – sectors that cities can substantially govern.


Global reach of urban GHG footprints. The four maps show the spatial distribution of the cities’ non-domestic upstream household GHG emissions. Maps are based on http://naturalearthdata.com/

Peter-Paul Pichler/PIK

“It turns out that the same activities that cause most local emissions of urban households – housing and transport – are also responsible for the majority of upstream emissions elsewhere along the supply chain,” says lead-author Peter-Paul Pichler from the Potsdam Institute for Climate Impact Research (PIK).

“People often think that mayors cannot do much about climate change since their power is restricted to city limits, but their actions can have far-reaching impacts. The planned emission reductions presented so far by national governments at the UN summit are clearly insufficient to limit global warming to well below 2 degrees Celsius, the target agreed by 190 countries, therefore additional efforts are needed.”

Housing and transport cause most city emissions, locally but also upstream

Cement and steel used for buildings take a huge amount of energy – typically from fossil fuels - to be produced, for instance. If a city instead chooses to foster low carbon construction materials this can drastically reduce its indirect CO2 emissions.

Even things that cities are already doing can affect far-away emissions. Raising insulation standards for buildings for example certainly slashes local emissions by reducing heating fuel demand. Yet it can also turn down the need for electric cooling in summer which reduces power generation and hence greenhouse gas emissions in some power plant beyond city borders.

In transport, expanding public facilities can minimize local emissions from car traffic. This reduces the number of cars that need to be built somewhere else, using loads of energy. So this is a win-win. But, again, more can be done. Cities can decide from which sources they procure the power needed to run, for instance, their subway trains or electric buses. By choosing energy from solar or wind, city governments could in fact close down far-away coal-fired power plants.

Comparison of New York, Berlin, Mexico City, Delhi – applicable to cities across the world

Interestingly, while the greenhouse gas footprint in the four cities that the scientists scrutinized range from 1.9 (Delhi) to 10.6 tons (New York) of CO2 equivalent per person and year, the proportions of local to upstream household emissions as well as the relative climate relevance of housing and transport turn out to be roughly the same. The international reach of upstream emissions is vast but varies.

In terms of emissions, Berlin’s global hinterland is largest, with more than half of its upstream emissions occurring outside of Germany, mostly in Russia, China and across the European Union. But also around 20% of Mexico City’s considerably smaller upstream emissions occur outside Mexico, mainly in the US and China.

“Measuring indirect emissions of urban populations so far has often been considered to be unfeasible, at least in a way that makes it possible to compare different cities,” says Helga Weisz, senior author of the study and a research domain co-chair at PIK. “We show that it is possible, but you have to invest the effort to actually do it.”

Her team analyzed huge amounts of existing data on economic input and output of different regions and successfully combined these with data on emission intensity of production in a lot of different sectors. The methodology that the scientists put together is in principle applicable in any place, enabling more effective collaboration between cities to reduce greenhouse gas emission footprints.

“The power of cities, open interconnected systems of great density, to tackle climate change even in times of uncertainty on the national and international level has been underestimated by both many local decision-makers and most of the international community,” says Weisz. “Cities must be encouraged and enabled to focus on their full emission spectrum – local and upstream– as they continue to develop their climate mitigation plans.”

Article: Peter-Paul Pichler, Timm Zwickel, Abel Chavez, Tino Kretschmer, Jessica Seddon, Helga Weisz (2017): Reducing Urban Greenhouse Gas Footprints. Scientific Reports [DOI 10.1038/s41598-017-15303-x]

Weblink to article: http://www.nature.com/articles/s41598-017-15303-x

For further information please contact:
PIK press office
Phone: +49 331 288 25 07
E-Mail: press@pik-potsdam.de
Twitter: @PIK_Climate

www.pik-potsdam.de

Weitere Informationen:

http://www.nature.com/articles/s41598-017-15303-x

Mareike Schodder | Potsdam-Institut für Klimafolgenforschung

More articles from Ecology, The Environment and Conservation:

nachricht Scientists on the road to discovering impact of urban road dust
18.01.2018 | University of Alberta

nachricht Gran Chaco: Biodiversity at High Risk
17.01.2018 | Humboldt-Universität zu Berlin

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>