Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Bison Mating Observations Fall Short of Predicting Reproductive Success


Journal of Mammalogy – Most mammal reproduction studies aim to not only discover who the fathers are but also to learn why some males sire more offspring than others. This is complicated since many male animals, including American bison, mate with multiple females, making it difficult to estimate which males will be the most successful at passing on their genes.

The current issue of the Journal of Mammalogy reports on a study of the bison herd at Fort Niobrara National Wildlife Refuge in north-central Nebraska.

Over 8 years, the authors observed the behavior of breeding bison and tested the genes of newborn calves to determine whether their observations matched the proven paternity.

The contribution made by male and female mammals to the next generation’s gene pool is often measured by counting the surviving offspring. However, when males roam widely and mate with multiple females, offspring numbers only reflect the reproductive success of the females. Genetic testing proves paternity but can be difficult and expensive.

Thus, many researchers observe behavior during the mating period and then estimate the males’ success at siring offspring. More research is needed on whether these estimates accurately predict which genes are passed on.

The authors of the current study looked at the behavior of American bison during the breeding period over several years. They then collected tissue samples of calves born the next year and ran genetic tests. The results were analyzed to see whether the genetic data matched the rutting bulls seen the previous year.

Overall, estimates of mating success proved to accurately predict the number of births in the herd the next year. However, individual success rates were less accurate; the actual number of offspring sired by individual males was far lower than what the authors expected based on their observations.

Of the copulations they saw, 44% did not lead to a birth. In addition, 60% of the newborn calves proved to be fathered by bulls different from those believed to be responsible for the pregnancy. The probability of siring offspring was based on several factors, including total copulations per season, the dominance of the bull, and the age of the bull or cow. As expected, the more times a bull mated, the more likely he was to be successful in reproducing his genes.

The authors concluded that observing a mating couple was not enough to predict the paternity of the calf born to the cow the following year. Genetic data alone also did not give a complete picture of reproductive success in the herd.

They argue that both genetic testing and observation of mating behavior are necessary to understand sexual selection and how it affects a species.

Full text of the article “Behavioral versus genetic measures of fitness in bison bulls (Bison bison),” Journal of Mammalogy, Vol. 95, No. 5, 2014, is now available.

About the Journal of Mammalogy
The Journal of Mammalogy, the flagship publication of the American Society of Mammalogists, is produced six times per year. A highly respected scientific journal, it details the latest research in the science of mammalogy and was recently named one of the top 100 most influential journals of biology and medicine in the last century by the Special Libraries Association. For more information, visit

Media Contact:
Jason Snell
Allen Press, Inc.
800/627-0326 ext. 410

Jason Snell | Allen Press

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>