Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bison Mating Observations Fall Short of Predicting Reproductive Success

12.11.2014

Journal of Mammalogy – Most mammal reproduction studies aim to not only discover who the fathers are but also to learn why some males sire more offspring than others. This is complicated since many male animals, including American bison, mate with multiple females, making it difficult to estimate which males will be the most successful at passing on their genes.

The current issue of the Journal of Mammalogy reports on a study of the bison herd at Fort Niobrara National Wildlife Refuge in north-central Nebraska.

Over 8 years, the authors observed the behavior of breeding bison and tested the genes of newborn calves to determine whether their observations matched the proven paternity.

The contribution made by male and female mammals to the next generation’s gene pool is often measured by counting the surviving offspring. However, when males roam widely and mate with multiple females, offspring numbers only reflect the reproductive success of the females. Genetic testing proves paternity but can be difficult and expensive.

Thus, many researchers observe behavior during the mating period and then estimate the males’ success at siring offspring. More research is needed on whether these estimates accurately predict which genes are passed on.

The authors of the current study looked at the behavior of American bison during the breeding period over several years. They then collected tissue samples of calves born the next year and ran genetic tests. The results were analyzed to see whether the genetic data matched the rutting bulls seen the previous year.

Overall, estimates of mating success proved to accurately predict the number of births in the herd the next year. However, individual success rates were less accurate; the actual number of offspring sired by individual males was far lower than what the authors expected based on their observations.

Of the copulations they saw, 44% did not lead to a birth. In addition, 60% of the newborn calves proved to be fathered by bulls different from those believed to be responsible for the pregnancy. The probability of siring offspring was based on several factors, including total copulations per season, the dominance of the bull, and the age of the bull or cow. As expected, the more times a bull mated, the more likely he was to be successful in reproducing his genes.

The authors concluded that observing a mating couple was not enough to predict the paternity of the calf born to the cow the following year. Genetic data alone also did not give a complete picture of reproductive success in the herd.

They argue that both genetic testing and observation of mating behavior are necessary to understand sexual selection and how it affects a species.

Full text of the article “Behavioral versus genetic measures of fitness in bison bulls (Bison bison),” Journal of Mammalogy, Vol. 95, No. 5, 2014, is now available.

About the Journal of Mammalogy
The Journal of Mammalogy, the flagship publication of the American Society of Mammalogists, is produced six times per year. A highly respected scientific journal, it details the latest research in the science of mammalogy and was recently named one of the top 100 most influential journals of biology and medicine in the last century by the Special Libraries Association. For more information, visit http://www.mammalogy.org/


Media Contact:
Jason Snell
Allen Press, Inc.
800/627-0326 ext. 410
jsnell@allenpress.com

Jason Snell | Allen Press

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>