Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

As hubs for bees and pollinators, flowers may be crucial in disease transmission

24.02.2014
Like a kindergarten or a busy airport where cold viruses and other germs circulate freely, flowers are common gathering places where pollinators such as bees and butterflies can pick up fungal, bacterial or viral infections that might be as benign as the sniffles or as debilitating as influenza.

But "almost nothing is known regarding how pathogens of pollinators are transmitted at flowers," postdoctoral researcher Scott McArt and Professor Lynn Adler at the University of Massachusetts Amherst write. "As major hubs of plant-animal interactions throughout the world, flowers are ideal venues for the transmission of microbes among plants and animals."


Several bees are known to vector mummyberry disease (Monilinia vaccinii-corymbosi), an economically important plant pathogen, to blueberry flowers. At the same time, bees can transmit their own pathogens, such as Crithidia bombi (see photo below) at flowers.

Credit: Scott McArt, UMass Amherst

In a recent review in Ecology Letters with colleagues at Yale and the University of Texas at Austin, McArt and Adler survey the literature and identify promising areas for future research on how floral traits influence pathogen transmission.

As the authors point out, "Given recent concerns about pollinator declines caused in part by pathogens, the role of floral traits in mediating pathogen transmission is a key area for further research." They say their synthesis could help efforts to control economically devastating pollinator-vectored plant pathogens such as fire blight, which affects rose family fruits such as apples and pears, and mummyberry disease, which attacks blueberries.

McArt adds, "Our intent with this paper is to stimulate interest in the fascinating yet poorly understood microbial world of flowers. We found several generalities in how plant pathogens are transmitted at flowers, yet the major take-home from our paper may be in pointing out that this is an important gap in our knowledge."

The authors identified 187 studies pertaining to plant pathogens published between 1947 and 2013 in which floral visitors were implicated in transmission and where transmission must have occurred at flowers or pathogen-induced pseudoflowers. These are flower-like structures made by a pathogen that can look and smell like a real flower, for example. Regarding animal pathogens, they identified 618 studies published before September 2013 using the same criteria.

"In total, we found eight major groups of animal pathogens that are potentially transmitted at flowers, including a trypanosomatid, fungi, bacteria and RNA viruses," they note. Their paper, "Arranging the bouquet of disease: Floral traits and the transmission of plant and animal pathogens," was featured in the publisher's "News Round-Up" of "most newsworthy research."

Traditionally, research on flower evolution has focused largely on selection by pollinators, but as McArt and colleagues point out, pollinators that also transmit pathogens may reduce the benefits to the plant of attracting them, depending on the costs and benefits of pollination. The researchers say more work is needed before scientists can know whether a flower's chemical or physical traits determine the likelihood that pathogens are transmitted, for example, and whether infection by pathogens is an inevitable consequence of pollinator visitation.

"Plant pathologists have made great strides in identifying floral traits that mediate host plant resistance to floral pathogens in individual systems; synthesizing this literature can provide generality in identifying traits that mediate plant-pathogen dynamics. From the pollinator's perspective, there has been surprisingly little work elucidating the role of flowers and floral traits for pathogen transmission. Given recent concerns about pollinator declines caused in part by pathogens, understanding the role of floral traits in disease transmission is a key missing element," say McArt and colleagues.

Janet Lathrop | EurekAlert!
Further information:
http://www.umass.edu

Further reports about: Ecology animals microbes pathogens pollinator-vectored plant pathogens

More articles from Ecology, The Environment and Conservation:

nachricht Protecting fisheries from evolutionary change
27.04.2016 | International Institute for Applied Systems Analysis (IIASA)

nachricht From waste to resource – how can we turn garbage into gold?
27.04.2016 | DLR Projektträger

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nuclear Pores Captured on Film

Using an ultra fast-scanning atomic force microscope, a team of researchers from the University of Basel has filmed “living” nuclear pore complexes at work for the first time. Nuclear pores are molecular machines that control the traffic entering or exiting the cell nucleus. In their article published in Nature Nanotechnology, the researchers explain how the passage of unwanted molecules is prevented by rapidly moving molecular “tentacles” inside the pore.

Using high-speed AFM, Roderick Lim, Argovia Professor at the Biozentrum and the Swiss Nanoscience Institute of the University of Basel, has not only directly...

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

New fabrication and thermo-optical tuning of whispering gallery microlasers

04.05.2016 | Physics and Astronomy

Introducing the disposable laser

04.05.2016 | Physics and Astronomy

A new vortex identification method for 3-D complex flow

04.05.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>