Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Acidification affects the ability of bacteria to clean our oceans

12.01.2016

Marine bacteria are heavily influenced by the ongoing ocean acidification caused by human emissions of carbon dioxide. This discovery was made by researchers at Linnaeus University, Sweden, together with researchers in Spain. The results are presented in an article in the recognised scientific journal Nature Climate Change.

“It is well known that the acidification of our oceans causes the degradation of coral reefs and disturbs the production of the calcareous shells of important phytoplankton”, says Jarone Pinhassi, professor in marine microbiology at Linnaeus University in Kalmar, Sweden. “However, it is new that also bacteria are affected negatively by ocean acidification”.

Researchers at Linnaeus University can now show that bacteria in the ocean that are exposed to acidification are forced to significantly alter their metabolism; from focusing on degradation to investing energy on dealing with the acid in the water.

Bacteria in our oceans play a crucial role in the global cycle of elements necessary to life.
They act primarily as degraders of organic material produced by microscopic algae in the ocean, or material released through wastewater. When algae or other organisms die and are degraded by bacteria, these miniscule organisms function as the wastewater treatment plants of the ocean. At the same time, bacteria help release nutrients like nitrogen and phosphorous, which are essential to the food chain.

It is estimated that the world’s oceans will become three times more acid towards the end of this century if human emissions of carbon dioxide from combustion of fossil fuels continue at current rates.

“It has generally been assumed that increased concentrations of carbon dioxide in the water – and the ocean acidification this causes – will primarily affect the production of the marine ecosystem by affecting the algal photosynthesis”, says Jarone Pinhassi. “Now our genetic analyses show that ocean acidification directly affect how bacteria regulate their metabolism”.

In every litre of seawater there are around 1 billion bacterial cells. In a manner similar to how gut microbiota is important to the well-being of humans, bacteria in our oceans play a critical role in determining the health of marine ecosystems. For example, bacteria synthesise vitamins on which algae and other organisms in the oceans depend.

“In order to understand the consequences of future climate change on the productivity of the ocean, it is essential to carry out research on how bacteria respond to human emissions of carbon dioxide”, says Jarone Pinhassi. “Perhaps we can even learn how to take advantage of the genetic adaptations of marine bacteria, in order to make better use of the resources of our planet”.

CONTACT:
Professor Jarone Pinhassi
Department of Biology and Environmental Science
Mobile phone: +4670-275 63 18
Email: jarone.pinhassi@Lnu.se

Pressofficer Jonas Tenje, jonas.tenje@lnu.se, +46703- 08 40 75

Weitere Informationen:

http://dx.doi.org/10.1038/nclimate2914 Full article on Nature Climate Change:

Jonas Tenje | idw - Informationsdienst Wissenschaft
Further information:
http://www.vr.se

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>