Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Acidification affects the ability of bacteria to clean our oceans

12.01.2016

Marine bacteria are heavily influenced by the ongoing ocean acidification caused by human emissions of carbon dioxide. This discovery was made by researchers at Linnaeus University, Sweden, together with researchers in Spain. The results are presented in an article in the recognised scientific journal Nature Climate Change.

“It is well known that the acidification of our oceans causes the degradation of coral reefs and disturbs the production of the calcareous shells of important phytoplankton”, says Jarone Pinhassi, professor in marine microbiology at Linnaeus University in Kalmar, Sweden. “However, it is new that also bacteria are affected negatively by ocean acidification”.

Researchers at Linnaeus University can now show that bacteria in the ocean that are exposed to acidification are forced to significantly alter their metabolism; from focusing on degradation to investing energy on dealing with the acid in the water.

Bacteria in our oceans play a crucial role in the global cycle of elements necessary to life.
They act primarily as degraders of organic material produced by microscopic algae in the ocean, or material released through wastewater. When algae or other organisms die and are degraded by bacteria, these miniscule organisms function as the wastewater treatment plants of the ocean. At the same time, bacteria help release nutrients like nitrogen and phosphorous, which are essential to the food chain.

It is estimated that the world’s oceans will become three times more acid towards the end of this century if human emissions of carbon dioxide from combustion of fossil fuels continue at current rates.

“It has generally been assumed that increased concentrations of carbon dioxide in the water – and the ocean acidification this causes – will primarily affect the production of the marine ecosystem by affecting the algal photosynthesis”, says Jarone Pinhassi. “Now our genetic analyses show that ocean acidification directly affect how bacteria regulate their metabolism”.

In every litre of seawater there are around 1 billion bacterial cells. In a manner similar to how gut microbiota is important to the well-being of humans, bacteria in our oceans play a critical role in determining the health of marine ecosystems. For example, bacteria synthesise vitamins on which algae and other organisms in the oceans depend.

“In order to understand the consequences of future climate change on the productivity of the ocean, it is essential to carry out research on how bacteria respond to human emissions of carbon dioxide”, says Jarone Pinhassi. “Perhaps we can even learn how to take advantage of the genetic adaptations of marine bacteria, in order to make better use of the resources of our planet”.

CONTACT:
Professor Jarone Pinhassi
Department of Biology and Environmental Science
Mobile phone: +4670-275 63 18
Email: jarone.pinhassi@Lnu.se

Pressofficer Jonas Tenje, jonas.tenje@lnu.se, +46703- 08 40 75

Weitere Informationen:

http://dx.doi.org/10.1038/nclimate2914 Full article on Nature Climate Change:

Jonas Tenje | idw - Informationsdienst Wissenschaft
Further information:
http://www.vr.se

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>