Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

unverDROSSen – efficient, conservation-friendly production of large casting components

03.03.2015

To compete in the international iron manufacturing market, the capability to efficiently produce large-scale casting parts while conserving resources is becoming increasingly essential. Particularly with wind power systems, the dross* found in large cast iron components with nodular graphite (GJS) can increase manufacturing, personnel and energy costs. These components must frequently be re-worked using extremely time-consuming manual processes.

Manufacturers of cast components (wind power turbines and ship engines for instance) are all too aware of the problem with dross, an issue that has not been resolved to date.


“Turret of the Südkronsberg wind power turbine from below“

©: Axel Hindemith / Wikimedia Commons

A research project involving renowned industry partners has finally opened up the possibility of examining large casting components with dross defects in a targeted fashion and developing ways to turn dross into usable parts, keep the re-work to a minimum and in particular avoid the scrapping of defective components, something which is a major benefit to manufacturers and users.

For more than 40 years, researchers at the Fraunhofer Institute for Nondestructive Testing IZFP have been involved in the development and enhancement of innovative nondestructive testing (NDT) methods for every conceivable industry.

Whether it`s cracks, delamination, material damage or material changes, these defects may frequently be invisible to the human eye, but not to the nondestructive testing experts at Fraunhofer IZFP. To date, the research industry has had little involvement in the problem of dross since these components are either re-worked or declared as rejects.

“Research has shown that several nondestructive testing processes possess excellent potential in more accurately identifying and characterizing these impurities. Our part in the unverDROSSen research project involves further developing existing NDT processes and where applicable to transfer newly developed processes into practical application,“ explains Dr. Jochen Kurz head of the Materials Characterization department at Fraunhofer IZFP. Working closely together with Fraunhofer IZFP is the Fraunhofer Institute for Structural Durability and System Reliability LBF, which is examining the issue of structural durability.

The unverDROSSen** project is being sponsored by the German Federal Ministry of Education and Research through its Jülich project management organization. Under the project leadership of Fraunhofer LBF and with the participation of renowned industry and association partners, the primary aim is to transfer the results of the research into practical applications for industry. The project is slated for completion by the end of 2017.

* Dross describes impurities caused by oxidation that form on the surface of molten metals. Components that exhibit these types of structural defects are frequently rejected during the construction of wind power Systems

** (a German word that means thorough, with painstaking care)

Weitere Informationen:

http://www.izfp.fraunhofer.de
http://www.lbf.fraunhofer.de

Sabine Poitevin-Burbes | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

More articles from Machine Engineering:

nachricht Fraunhofer IWS Dresden collaborates with a strong research partner in Singapore
15.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht Russian researchers developed high-pressure natural gas operating turbine-generator
06.02.2017 | Peter the Great Saint-Petersburg Polytechnic University

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>