Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


unverDROSSen – efficient, conservation-friendly production of large casting components


To compete in the international iron manufacturing market, the capability to efficiently produce large-scale casting parts while conserving resources is becoming increasingly essential. Particularly with wind power systems, the dross* found in large cast iron components with nodular graphite (GJS) can increase manufacturing, personnel and energy costs. These components must frequently be re-worked using extremely time-consuming manual processes.

Manufacturers of cast components (wind power turbines and ship engines for instance) are all too aware of the problem with dross, an issue that has not been resolved to date.

“Turret of the Südkronsberg wind power turbine from below“

©: Axel Hindemith / Wikimedia Commons

A research project involving renowned industry partners has finally opened up the possibility of examining large casting components with dross defects in a targeted fashion and developing ways to turn dross into usable parts, keep the re-work to a minimum and in particular avoid the scrapping of defective components, something which is a major benefit to manufacturers and users.

For more than 40 years, researchers at the Fraunhofer Institute for Nondestructive Testing IZFP have been involved in the development and enhancement of innovative nondestructive testing (NDT) methods for every conceivable industry.

Whether it`s cracks, delamination, material damage or material changes, these defects may frequently be invisible to the human eye, but not to the nondestructive testing experts at Fraunhofer IZFP. To date, the research industry has had little involvement in the problem of dross since these components are either re-worked or declared as rejects.

“Research has shown that several nondestructive testing processes possess excellent potential in more accurately identifying and characterizing these impurities. Our part in the unverDROSSen research project involves further developing existing NDT processes and where applicable to transfer newly developed processes into practical application,“ explains Dr. Jochen Kurz head of the Materials Characterization department at Fraunhofer IZFP. Working closely together with Fraunhofer IZFP is the Fraunhofer Institute for Structural Durability and System Reliability LBF, which is examining the issue of structural durability.

The unverDROSSen** project is being sponsored by the German Federal Ministry of Education and Research through its Jülich project management organization. Under the project leadership of Fraunhofer LBF and with the participation of renowned industry and association partners, the primary aim is to transfer the results of the research into practical applications for industry. The project is slated for completion by the end of 2017.

* Dross describes impurities caused by oxidation that form on the surface of molten metals. Components that exhibit these types of structural defects are frequently rejected during the construction of wind power Systems

** (a German word that means thorough, with painstaking care)

Weitere Informationen:

Sabine Poitevin-Burbes | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

More articles from Machine Engineering:

nachricht Process-Integrated Inspection for Ultrasound-Supported Friction Stir Welding of Metal Hybrid-Joints
27.09.2016 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

nachricht Lightweight robots in manual assembly
13.09.2016 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>