Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

unverDROSSen – efficient, conservation-friendly production of large casting components

03.03.2015

To compete in the international iron manufacturing market, the capability to efficiently produce large-scale casting parts while conserving resources is becoming increasingly essential. Particularly with wind power systems, the dross* found in large cast iron components with nodular graphite (GJS) can increase manufacturing, personnel and energy costs. These components must frequently be re-worked using extremely time-consuming manual processes.

Manufacturers of cast components (wind power turbines and ship engines for instance) are all too aware of the problem with dross, an issue that has not been resolved to date.


“Turret of the Südkronsberg wind power turbine from below“

©: Axel Hindemith / Wikimedia Commons

A research project involving renowned industry partners has finally opened up the possibility of examining large casting components with dross defects in a targeted fashion and developing ways to turn dross into usable parts, keep the re-work to a minimum and in particular avoid the scrapping of defective components, something which is a major benefit to manufacturers and users.

For more than 40 years, researchers at the Fraunhofer Institute for Nondestructive Testing IZFP have been involved in the development and enhancement of innovative nondestructive testing (NDT) methods for every conceivable industry.

Whether it`s cracks, delamination, material damage or material changes, these defects may frequently be invisible to the human eye, but not to the nondestructive testing experts at Fraunhofer IZFP. To date, the research industry has had little involvement in the problem of dross since these components are either re-worked or declared as rejects.

“Research has shown that several nondestructive testing processes possess excellent potential in more accurately identifying and characterizing these impurities. Our part in the unverDROSSen research project involves further developing existing NDT processes and where applicable to transfer newly developed processes into practical application,“ explains Dr. Jochen Kurz head of the Materials Characterization department at Fraunhofer IZFP. Working closely together with Fraunhofer IZFP is the Fraunhofer Institute for Structural Durability and System Reliability LBF, which is examining the issue of structural durability.

The unverDROSSen** project is being sponsored by the German Federal Ministry of Education and Research through its Jülich project management organization. Under the project leadership of Fraunhofer LBF and with the participation of renowned industry and association partners, the primary aim is to transfer the results of the research into practical applications for industry. The project is slated for completion by the end of 2017.

* Dross describes impurities caused by oxidation that form on the surface of molten metals. Components that exhibit these types of structural defects are frequently rejected during the construction of wind power Systems

** (a German word that means thorough, with painstaking care)

Weitere Informationen:

http://www.izfp.fraunhofer.de
http://www.lbf.fraunhofer.de

Sabine Poitevin-Burbes | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

More articles from Machine Engineering:

nachricht Making lightweight construction suitable for series production
24.04.2017 | Laser Zentrum Hannover e.V.

nachricht It Takes Two: Structuring Metal Surfaces Efficiently with Lasers
15.03.2017 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>