Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Surface Sensor for Use in Rough Environments

09.03.2011
The Laser Zentrum Hannover (LZH) is developing a new thin-film strain gauge, which is deposited directly on the surface of tooling machines, motors, workpieces or for example bearings. The special qualities of the sensor allow it to be used in environments subject to high temperature fluctuations, or mechanical or chemical stresses.

Laser structured strain gauges can be used for exact measurement of forces at critical points, such as for highly stressed tooling machines or complex 3-D workpieces. Currently, the Laser Zentrum Hannover (LZH) is developing sensor structures using ultrashort laser pulses, with the goal of making the production of high-quality thin-film strain gauges economically attractive for small and middle-sized batches.


Full bridge strain sensor for components in a tooling machine.

Monitoring production for tooling machines, preventing overloading and lost work time, or controlling fuel injection in diesel motors are just a few examples for important uses of the so-called thin-film strain gauges (TFSG). They can be used for exact and real time measurement of strain in machines, bearings or motors, at the place where the highest strain occurs. However, these environments call for highly robust sensors which can withstand high temperature fluctuations as well as mechanical and chemical stresses.

Previous sensor solutions have distinct weaknesses. Often, TFSG foils are attached using adhesives, which can run or ooze, and thus distort measurement results. Especially in rough environments, the long-term stability of these sensors can be greatly impaired. Thus, strain gauges based on thin-film technologies are preferred for applications with special requirements. Photo-lithographic sensor structures are complex, and not cost efficient for small or middle-sized batches. Also, the masking techniques used in electronics production are not suitable for complex workpieces with cylindrical, spherical or free-form areas, and can thus only be used for flat workpieces.

The Production and System Technology Department of the LZH is working on a new solution. The Microtechnology Group of this department is currently working on developing a laser-structured TFSG. After the workpiece has been coated with an isolation and sensor layer, an ultra short pulse laser with a lateral resolution of 10 to 100 µm can be used to structure the sensor, without thermally damaging the sensitive layers. The advantage of using this process is that complicated masking processes are not necessary, and the sensors can be directly applied to complex, three-dimensional workpieces.

These developments are a part of the special research project "Gentelligent Components in their Lifecycle", which is financed by the German Research Foundation. The main goal is to develop a multi-sensor network for monitoring processes, machines and workpieces, which gathers information and can make a prediction based on this. The first prototypes of a laser structured TFSG are planned for use in the z-axis slides of a tooling machine. Apart from machining, other possibilities for using the innovative surface sensor can be found in automotive technology, bearing technology, robotics or in medical technology (e.g. prosthetics).

A second project of the Microtechnology Group is concerned with developing a process which can be used for better coatings on complex surfaces. In cooperation with the Fraunhofer-Institute for Surface Engineering and Thin Films, investigationson the possibilities of using High Power Pulsed Magnetron Sputtering (HPPMS) or Modulated Pulse Plasmas (MPP) are being carried out.

Both methods can be used to improve the surface roughness of the deposition layer as well as for coating undercut areas. The MPP process also has the advantage that, apart from the improved layer characteristics, there is also a higher deposition rate than that of conventional sputtering methods. The results of the project "Directly Applied Thin-Film TFSG on 3-D Workpieces" will first be used in the area of precision weighing technology.

Contact:
Laser Zentrum Hannover e.V.
Michael Botts
Hollerithallee 8
D-30419 Hannover
Germany
Tel.: +49 511 2788-151
Fax: +49 511 2788-100
E-Mail: m.botts@lzh.de
The Laser Zentrum Hannover e.V. (LZH) carries out research and development in the field of laser technology and is supported by the Ministry of Economic Affairs, Labour and Transport of the State of Lower Saxony (Niedersächsisches Ministerium für Wirtschaft, Arbeit und Verkehr).

Michael Botts | idw
Further information:
http://www.lzh.de

More articles from Machine Engineering:

nachricht Scientists from Hannover develop a novel lightweight production process
27.09.2017 | IPH - Institut für Integrierte Produktion Hannover gGmbH

nachricht PRESTO – Highly Dynamic Powerhouses
15.05.2017 | JULABO GmbH

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>