Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Surface Sensor for Use in Rough Environments

09.03.2011
The Laser Zentrum Hannover (LZH) is developing a new thin-film strain gauge, which is deposited directly on the surface of tooling machines, motors, workpieces or for example bearings. The special qualities of the sensor allow it to be used in environments subject to high temperature fluctuations, or mechanical or chemical stresses.

Laser structured strain gauges can be used for exact measurement of forces at critical points, such as for highly stressed tooling machines or complex 3-D workpieces. Currently, the Laser Zentrum Hannover (LZH) is developing sensor structures using ultrashort laser pulses, with the goal of making the production of high-quality thin-film strain gauges economically attractive for small and middle-sized batches.


Full bridge strain sensor for components in a tooling machine.

Monitoring production for tooling machines, preventing overloading and lost work time, or controlling fuel injection in diesel motors are just a few examples for important uses of the so-called thin-film strain gauges (TFSG). They can be used for exact and real time measurement of strain in machines, bearings or motors, at the place where the highest strain occurs. However, these environments call for highly robust sensors which can withstand high temperature fluctuations as well as mechanical and chemical stresses.

Previous sensor solutions have distinct weaknesses. Often, TFSG foils are attached using adhesives, which can run or ooze, and thus distort measurement results. Especially in rough environments, the long-term stability of these sensors can be greatly impaired. Thus, strain gauges based on thin-film technologies are preferred for applications with special requirements. Photo-lithographic sensor structures are complex, and not cost efficient for small or middle-sized batches. Also, the masking techniques used in electronics production are not suitable for complex workpieces with cylindrical, spherical or free-form areas, and can thus only be used for flat workpieces.

The Production and System Technology Department of the LZH is working on a new solution. The Microtechnology Group of this department is currently working on developing a laser-structured TFSG. After the workpiece has been coated with an isolation and sensor layer, an ultra short pulse laser with a lateral resolution of 10 to 100 µm can be used to structure the sensor, without thermally damaging the sensitive layers. The advantage of using this process is that complicated masking processes are not necessary, and the sensors can be directly applied to complex, three-dimensional workpieces.

These developments are a part of the special research project "Gentelligent Components in their Lifecycle", which is financed by the German Research Foundation. The main goal is to develop a multi-sensor network for monitoring processes, machines and workpieces, which gathers information and can make a prediction based on this. The first prototypes of a laser structured TFSG are planned for use in the z-axis slides of a tooling machine. Apart from machining, other possibilities for using the innovative surface sensor can be found in automotive technology, bearing technology, robotics or in medical technology (e.g. prosthetics).

A second project of the Microtechnology Group is concerned with developing a process which can be used for better coatings on complex surfaces. In cooperation with the Fraunhofer-Institute for Surface Engineering and Thin Films, investigationson the possibilities of using High Power Pulsed Magnetron Sputtering (HPPMS) or Modulated Pulse Plasmas (MPP) are being carried out.

Both methods can be used to improve the surface roughness of the deposition layer as well as for coating undercut areas. The MPP process also has the advantage that, apart from the improved layer characteristics, there is also a higher deposition rate than that of conventional sputtering methods. The results of the project "Directly Applied Thin-Film TFSG on 3-D Workpieces" will first be used in the area of precision weighing technology.

Contact:
Laser Zentrum Hannover e.V.
Michael Botts
Hollerithallee 8
D-30419 Hannover
Germany
Tel.: +49 511 2788-151
Fax: +49 511 2788-100
E-Mail: m.botts@lzh.de
The Laser Zentrum Hannover e.V. (LZH) carries out research and development in the field of laser technology and is supported by the Ministry of Economic Affairs, Labour and Transport of the State of Lower Saxony (Niedersächsisches Ministerium für Wirtschaft, Arbeit und Verkehr).

Michael Botts | idw
Further information:
http://www.lzh.de

More articles from Machine Engineering:

nachricht Evaluating risk of hydrogen embrittlement: new simulation of cold cracks in high-strength steels
03.05.2018 | Fraunhofer-Institut für Werkstoffmechanik IWM

nachricht Nanostructured Alloying with Oxygen
09.04.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>