Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists from Hannover develop a novel lightweight production process

27.09.2017

In cooperation with the Institute of Welding and Machining (ISAF) of TU Clausthal, the Institut für Integrierte Produktion Hannover (IPH) gGmbH is developing a novel forging process for lightweight car manufacturing. The researchers' aim is to create a material bond between steel sheets and bulk aluminium parts already during the forming process – without the need for an extra joining step. This would contribute to a faster and more efficient production of load-optimized components.

Hybrid compound forging is the first process that combines two lightweight construction approaches, namely creating a material bond between steel sheets and bulk parts, and employing different materials with different properties – such as lightweight aluminium and strong steel.


Hybrid compound forging: The novel lightweight production process firmly bonds bulk aluminium parts to steel sheets – already during the forming process without an extra joining step.

Photo: IPH


Aluminium stud meets steel sheet: IPH researchers have already succeeded in creating a form-fit connection. Now they want to realize a material bond between the two parts.

Photo: IPH

The researchers' idea is to form and join a steel sheet and a solid aluminium stud in one process step. In the past, the individual parts have been formed first and then joined in a second step, for example using stud welding. The idea of hybrid compound forging is to eliminate the subsequent joining step – and facilitate a faster and more efficient production of lightweight components.

When designing the novel lightweight production process, IPH and ISAF have to meet two challenges: Since aluminium has a considerably lower melting point than steel, the joint forming process is more complicated.

Moreover, the mixing of steel and aluminium creates brittle intermetallic phases, a material bond which is not strong enough and thus unsuitable for car manufacture. For this reason, the researchers employ zinc-plated steel sheets and aluminium studs: Zinc firmly bonds to aluminium as well as to steel without creating brittle phases.

Within the scope of the research project "Hybrid Compound Forging", the researchers' task is to determine the most suitable process conditions – i.e. optimal temperature, pressure and speed for successfully forming and joining the two parts.

They also try to identify the suitability of the novel process with respect to different types of sheet thicknesses and stud shapes. Another topic is to determine the joining zone's capacity to withstand load as well as the machinability of the hybrid part after joining.

In future, hybrid compound forging could be used in the automotive and aerospace industry to produce components, such as longitudinal beams, tail lamp mounts or cargo tie-down rings. Lightweight construction plays an important role in the automotive and aerospace sector: Lesser weight means lower fuel consumption.

Over the years, the Institut für Integrierte Produktion Hannover (IPH) gGmbH has already been dealing with various lightweight approaches in sheet and bulk metal forming, like for example cross wedge rolling and hydroforming of hybrid steel and aluminium parts.

The researchers have already succeeded in combining sheet and bulk metal parts of different materials in one single forming step – but only as a prototypic form-fit connection between steel sheet and aluminium stud. In the current research project "Hybrid Compound Forging", the researchers are going for a material bond using zinc as filler material which also offers advantages as to contact corrosion in the steel-aluminium material combination.

The project is funded by the German Research Foundation (DFG).

Susann Reichert | idw - Informationsdienst Wissenschaft
Further information:
http://www.iph-hannover.de

More articles from Machine Engineering:

nachricht PRESTO – Highly Dynamic Powerhouses
15.05.2017 | JULABO GmbH

nachricht Making lightweight construction suitable for series production
24.04.2017 | Laser Zentrum Hannover e.V.

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

Im Focus: Support Free with “TwoCure” – Innovation in Resin-Based 3D Printing

The Fraunhofer Institute for Laser Technology ILT and Rapid Shape GmbH are working together to further develop resin-based 3D printing. The new “TwoCure” process requires no support structures and is significantly more efficient and productive than conventional 3D printing techniques for plastic components. Experts from Fraunhofer ILT will be presenting the state-funded joint development that makes use of the interaction of light and cold in forming the components at formnext 2017 from November 14 to 17 in Frankfurt am Main.

Much like stereolithography, one of the best-known processes for printing 3D plastic components works using photolithographic light exposure that causes liquid...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

 
Latest News

Transfer technique produces wearable gallium nitride gas sensors

10.11.2017 | Power and Electrical Engineering

NASA CubeSat to test miniaturized weather satellite technology

10.11.2017 | Information Technology

Research shows ice sheets as large as Greenland's melted fast in a warming climate

10.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>