Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plastic parts for internal combustion engines

01.04.2015

Efforts to produce lighter vehicles necessarily include engine parts, such as the cylinder casing, which could shed up to 20 percent of its weight if it were made of fiber-reinforced plastic rather than aluminum – without added costs. Such injection-molded parts are even suitable for mass production.

It’s self-evident that cars must become lighter in order to reduce fuel consumption. For most car designers this principally means body parts, but the powertrain system, which includes the engine, also accounts for a large proportion of the vehicle’s weight.


Demonstration model of the experimental engine with lightweight cylinder casing to be presented at the Hannover Messe.

© Fraunhofer ICT

Until now, carmakers have relied on aluminum to reduce the weight of engine components such as the cylinder block. In the future, car manufacturers will be able to achieve further weight savings by designing cylinder blocks in which certain parts are made of fiber-reinforced plastics.

An experimental engine developed by the Fraunhofer project group for new drive systems (NAS), which forms part of the Fraunhofer Institute for Chemical Technology ICT, in collaboration with SBHPP, the high-performance plastics business unit of Sumitomo Bakelite Co. Ltd., Japan, demonstrates this principle.

“We used a fiber-reinforced composite material to build a cylinder casing for a one-cylinder research engine,” reports Dr. Lars-Fredrik Berg, who is the project leader and manager of the research area Lightweight Powertrain Design at the Fraunhofer Project Group for new drive systems.

“The cylinder casing weighs around 20 percent less than the equivalent aluminum component, and costs the same.” It seems an obvious solution, but getting there involved numerous technical challenges, because the materials used have to be able to withstand extreme temperatures, high pressure and vibrations without suffering damage.

That plastics possessed these qualities was recognized back in the 1980s, but at that time it was only possible to produce this types of parts in a small volume and by investing a lot of effort in the form of manual labour – a no-go for the automotive industry, in which cylinder blocks are mass-produced in millions of units.

So what did the researchers do to ensure that their engine would be sufficiently robust? “First we looked at the engine design and identified the areas subject to high thermal and mechanical loads. Here we use metal inserts to strengthen their wear resistance,” explains Berg. One example is the cylinder liner, inside which the piston moves up and down millions of times during the life of the vehicle. The researchers also modified the geometry of these parts to ensure that the plastic is exposed to as little heat as possible.

Glass-fiber-reinforced phenolic resin

The characteristics of the plastic material also play an important role. It needs to be sufficiently hard and rigid, and resistant to oil, gasoline and glycol in the cooling water. It must also demonstrate good adherence to the metal inserts and not have a higher thermal expansion coefficient than the metal – otherwise the inserts would separate from the substrate.

Berg’s team uses a glass-fiber-reinforced phenolic composite developed by SBHPP, which fulfills all of these requirements and comprises 55 percent fibers and 45 percent resin. A lighter-weight but more expensive alternative is to use a carbon-fiber-reinforced composite – the choice depends on whether the carmaker wishes to optimize the engine in terms of costs or in terms of weight.

The researchers produce these components from granulated thermoset plastics using an injection molding process. The melted composite material, in which the glass fibers are already mixed with the resin, hardens in the mold into which it was injected.

The scientists analyzed the process using computer simulations to determine the best method of injecting the material in order to optimize the performance of the finished product. The process is compatible with mass production scenarios and the manufacturing costs are significantly lower than those for aluminum engine parts, not least because it eliminates numerous finishing operations.

A prototype of this engine will be presented at this year’s Hannover Messe, which takes place on April 13-17 (exhibit in Hall 2, Booth C16). Test runs of the new engine have been completed successfully. “We have proved that it is capable of the same performance as conventionally built engines,” says Berg.

Moreover, it promises to offer further advantages such as lower running noise as against engines relying exclusively on metal parts. Initial data also indicates that the amount of heat radiated to the environment is lower than that generated by aluminum-based engines. The scientists intend to take their research further by developing a multi-cylinder plastics-based engine, including the crankshaft bearings.

Dr. Stefan Tröster | Fraunhofer Research News
Further information:
http://www.fraunhofer.de/en/press/research-news/2015/april/plastic-parts-for-internal-combustion-engines.html

More articles from Machine Engineering:

nachricht Satellite-based Laser Measurement Technology against Climate Change
17.01.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht LZH optimizes laser-based CFRP reworking for the aircraft industry
24.11.2016 | Laser Zentrum Hannover e.V.

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>