Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New options for high-strength fibre ropes

17.06.2016

The new rope end connection made of plastic is the result from six years of research conducted by the University of Stuttgart. The cover for high-strength fibre ropes is now ready to be put on the market, a prototype is already in use. Its inventors are now looking for appropriate partners in industry.

Lightweight, inexpensive and extremely durable: The novel rope end connection for 4 to 96 mm strong fibre ropes can be subjected to extremely high tensile stress without breaking. Rope end connections are the link between the rope anchorage and the rope itself. The secret lies in the bonding resin and the special type of casting: It is poured onto the exactly clamped and pre-stressed fibres of the rope.


Engineer Sven Winter has developed a novel rope end connection for 4 to 96 mm strong fibre ropes that can be subjected to extremely high tensile stress without breaking.

Birgit Fernbacher, TLB GmbH


The rope end connection made of fibre cable and resin is extremely stable and durable and weighs only an eighth of a wire rope.

Birgit Fernbacher, TLB GmbH

Thus, a complete unit of rope and end connections is created which is able to withstand extremely high mechanical forces. "In our numerous tests, we could always reach and even often exceed the minimum breaking force indicated by the rope manufacturer," says Dipl.-ing. Sven Winter who developed the novel rope end connection together with Dipl.-Ing. Anita Finckh-Jung at the Institute of Mechanical Handling and Logistics (IFT) of the University of Stuttgart. This invention will open up completely new application areas for high-strength fibre ropes. “Because even the greatest rope is worthless without the appropriate end connection,” as Sven Winter puts it.

This innovative rope end connection – with patent applications filed in Europe, the US and China – can be used wherever steel cables are to be replaced by high-strength fibre ropes. For example, where the weight does matter or the installation should be as easy as possible. Given the fact that a fibre rope weighs only about an eighth of a steel cable and the combination of cast resin is relatively lightweight, the weight can be reduced by up to 40 percent compared to conventional applications.

“This is not an issue when using thin ropes. However, the difference can be huge for ropes with a diameter of up to 96 mm,” Sven Winter points out. Easy installation is another asset: In the rear part, the rope end connection has a mounting sleeve that can be attached to the lifting device with a few simple steps.

The combination of fibre rope and resin is also extremely durable, as numerous tests have shown. "No matter how often the rope is loaded and relieved, the connection is always stable", explains Sven Winter. The tension-tension fatigue performance is very good.

"We have carried out a four-week test during which the connection was loaded and relieved 1.5 million times. Even after this test the fibre rope sample reached values above the minimum breaking strength of the rope.” Further advantages include an individually adjustable geometry and the option to integrate sensors for measuring the tractive force or for identification purposes via RFID tags.

About six years have passed from the initial idea to a marketable product. Now the time has come for a know-how transfer from university to industry. "We can imagine many different fields of application and are therefore looking for industrial partners to start implementation," explains TLB Innovation Manager Dr.-Ing. Hubert Siller.

The University of Stuttgart has entrusted Technologie-Lizenz-Büro (TLB) GmbH with the marketing of its innovation and the global economic implementation of this cutting-edge technology. It could, for example, be used in lifting and conveying equipment, cranes, in bridge construction, in ship technology and offshore applications such as the construction of wind turbines or the anchoring of oil platforms, says Dr.-Ing. Hubert Siller.

The idea for the new rope end connection was conceived during a research project at the IFT of Stuttgart University. "The ingenious idea came to us when we were working on another project with cast resin. We were wondering why you had to intertwine and cover ropes. Why not simply cast them to make them durable?” inventor Sven Winter shares with us. Together with his colleague Anita Finck-Jung he started to make the first prototype.

"Initially, the compound had a breaking force of only 30 percent, but we knew even back then that it had great potential." After six years of research and countless tests and modifications, the end connection developed by Winter and Finck-Jung can now bear a breaking force of ropes of up to 96 mm. "There is a large variety of possible applications, from very small to very large ones," says Sven Winter. What he needs now are appropriate partners in industry.

Engineer Sven Winter has been testing wire ropes for about 20 years now. Since 2007, he has been in charge of the Rope Technology Division, headed by Prof. Dr.-Ing. Karl-Heinz Wehking, at the Institute of Mechanical Handling and Logistics (IFT). 23 employees from different engineering disciplines work in Winter’s department, which has a 1300 sqm test hall, with various test facilities. Among the customers of IFT’s Rope Technology Division are public institutions, industrial companies and operators of facilities and buildings.

Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovation. Acting on behalf of the University, TLB is in charge of the commercial implementation of this future-orientated technology at a global level. For more detailed information, please contact Dr.-Ing. Hubert Siller, email: siller@tlb.de

Weitere Informationen:

http://www.technologie-lizenz-buero.com/
http://www.uni-stuttgart.de/ift/institut/abteilungen/seiltechnologie

Annette Siller | idw - Informationsdienst Wissenschaft

Further reports about: RFID tags Rope TLB construction cutting-edge technology test facilities

More articles from Machine Engineering:

nachricht Making lightweight construction suitable for series production
24.04.2017 | Laser Zentrum Hannover e.V.

nachricht It Takes Two: Structuring Metal Surfaces Efficiently with Lasers
15.03.2017 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>