Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New options for high-strength fibre ropes

17.06.2016

The new rope end connection made of plastic is the result from six years of research conducted by the University of Stuttgart. The cover for high-strength fibre ropes is now ready to be put on the market, a prototype is already in use. Its inventors are now looking for appropriate partners in industry.

Lightweight, inexpensive and extremely durable: The novel rope end connection for 4 to 96 mm strong fibre ropes can be subjected to extremely high tensile stress without breaking. Rope end connections are the link between the rope anchorage and the rope itself. The secret lies in the bonding resin and the special type of casting: It is poured onto the exactly clamped and pre-stressed fibres of the rope.


Engineer Sven Winter has developed a novel rope end connection for 4 to 96 mm strong fibre ropes that can be subjected to extremely high tensile stress without breaking.

Birgit Fernbacher, TLB GmbH


The rope end connection made of fibre cable and resin is extremely stable and durable and weighs only an eighth of a wire rope.

Birgit Fernbacher, TLB GmbH

Thus, a complete unit of rope and end connections is created which is able to withstand extremely high mechanical forces. "In our numerous tests, we could always reach and even often exceed the minimum breaking force indicated by the rope manufacturer," says Dipl.-ing. Sven Winter who developed the novel rope end connection together with Dipl.-Ing. Anita Finckh-Jung at the Institute of Mechanical Handling and Logistics (IFT) of the University of Stuttgart. This invention will open up completely new application areas for high-strength fibre ropes. “Because even the greatest rope is worthless without the appropriate end connection,” as Sven Winter puts it.

This innovative rope end connection – with patent applications filed in Europe, the US and China – can be used wherever steel cables are to be replaced by high-strength fibre ropes. For example, where the weight does matter or the installation should be as easy as possible. Given the fact that a fibre rope weighs only about an eighth of a steel cable and the combination of cast resin is relatively lightweight, the weight can be reduced by up to 40 percent compared to conventional applications.

“This is not an issue when using thin ropes. However, the difference can be huge for ropes with a diameter of up to 96 mm,” Sven Winter points out. Easy installation is another asset: In the rear part, the rope end connection has a mounting sleeve that can be attached to the lifting device with a few simple steps.

The combination of fibre rope and resin is also extremely durable, as numerous tests have shown. "No matter how often the rope is loaded and relieved, the connection is always stable", explains Sven Winter. The tension-tension fatigue performance is very good.

"We have carried out a four-week test during which the connection was loaded and relieved 1.5 million times. Even after this test the fibre rope sample reached values above the minimum breaking strength of the rope.” Further advantages include an individually adjustable geometry and the option to integrate sensors for measuring the tractive force or for identification purposes via RFID tags.

About six years have passed from the initial idea to a marketable product. Now the time has come for a know-how transfer from university to industry. "We can imagine many different fields of application and are therefore looking for industrial partners to start implementation," explains TLB Innovation Manager Dr.-Ing. Hubert Siller.

The University of Stuttgart has entrusted Technologie-Lizenz-Büro (TLB) GmbH with the marketing of its innovation and the global economic implementation of this cutting-edge technology. It could, for example, be used in lifting and conveying equipment, cranes, in bridge construction, in ship technology and offshore applications such as the construction of wind turbines or the anchoring of oil platforms, says Dr.-Ing. Hubert Siller.

The idea for the new rope end connection was conceived during a research project at the IFT of Stuttgart University. "The ingenious idea came to us when we were working on another project with cast resin. We were wondering why you had to intertwine and cover ropes. Why not simply cast them to make them durable?” inventor Sven Winter shares with us. Together with his colleague Anita Finck-Jung he started to make the first prototype.

"Initially, the compound had a breaking force of only 30 percent, but we knew even back then that it had great potential." After six years of research and countless tests and modifications, the end connection developed by Winter and Finck-Jung can now bear a breaking force of ropes of up to 96 mm. "There is a large variety of possible applications, from very small to very large ones," says Sven Winter. What he needs now are appropriate partners in industry.

Engineer Sven Winter has been testing wire ropes for about 20 years now. Since 2007, he has been in charge of the Rope Technology Division, headed by Prof. Dr.-Ing. Karl-Heinz Wehking, at the Institute of Mechanical Handling and Logistics (IFT). 23 employees from different engineering disciplines work in Winter’s department, which has a 1300 sqm test hall, with various test facilities. Among the customers of IFT’s Rope Technology Division are public institutions, industrial companies and operators of facilities and buildings.

Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovation. Acting on behalf of the University, TLB is in charge of the commercial implementation of this future-orientated technology at a global level. For more detailed information, please contact Dr.-Ing. Hubert Siller, email: siller@tlb.de

Weitere Informationen:

http://www.technologie-lizenz-buero.com/
http://www.uni-stuttgart.de/ift/institut/abteilungen/seiltechnologie

Annette Siller | idw - Informationsdienst Wissenschaft

Further reports about: RFID tags Rope TLB construction cutting-edge technology test facilities

More articles from Machine Engineering:

nachricht PRESTO – Highly Dynamic Powerhouses
15.05.2017 | JULABO GmbH

nachricht Making lightweight construction suitable for series production
24.04.2017 | Laser Zentrum Hannover e.V.

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>