Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Modular Prototype Production with Lasers Enables Faster Gas Turbine Development

06.07.2016

The long lead time of turbine blades and vanes presents a big challenge to the validation of new part designs in engine tests. Conventional vane production through casting is unsuited for the fast iteration cycles required today in the development of hot path components. In a joint project, Siemens and the Fraunhofer Institute for Laser Technology ILT have now developed a faster production process based on selective laser melting (SLM). Components are manufactured in a modular way in the new process chain, resulting in additional benefits.

Last year, Siemens commissioned its Clean Energy Center, a new combustion test center in Ludwigsfelde near Berlin. The center plays a major role in developing and refining gas turbines as a facility for conducting realistic tests on various turbine components with liquid or gaseous fuels. Rigorously optimizing the combustion processes involved is the key to achieving greater energy efficiency in the turbines.


Guide vanes made using the new modular process chain (material: Inconel® 718).

Fraunhofer ILT, Aachen, Germany.


Individually manufactured segments of the guide vanes for the modular process chain (material: Inconel® 718).

Fraunhofer ILT, Aachen, Germany.

During the tests, individual turbine parts are exposed to temperatures of 1500 degrees Celsius or more. Such components are usually manufactured from superalloys in a precision casting process, in which each iterative loop may last several months and incur significant costs. Thus far, this has severely curtailed the number of tests possible.

Fast prototype production with additive laser techniques

Experts from the Siemens gas turbine manufacturing plant in Berlin and the Fraunhofer Institute for Laser Technology ILT in Aachen, Germany, have now developed a laser-based technology that considerably speeds up the manufacturing process for turbine vanes slated for the hot gas area of the engine.

To withstand the high temperatures over long periods of time, the turbine vanes require complex internal cooling structures. Selective laser melting (SLM) has proven itself to be up to the challenge, especially for prototypes or small batches featuring complex geometries. Similar to using a 3D printer, special alloys are melted by laser on a powder bed. The components are then built up layer by layer.

Over the past several years, Fraunhofer ILT has built up considerable expertise in the use of additive laser techniques and alloys for components exposed to high temperatures. With this wealth of experience, the scientists were able to develop special processes that made it possible to produce the relatively large parts (up to 250 mm) at Siemens with a high degree of dimensional accuracy and superior surface quality.

New production chain uses modular design for turbine vanes

Securely mounted on the turbine housing, guide vanes channel the hot gas to the movable rotor blades. The guide vanes consist of two massive platforms plus an airfoil with a delicate cooling structure. The latter presents a major manufacturing challenge; even production using SLM required additional internal supports.

A modified process chain has solved the problem: the platforms and the airfoil are manufactured separately and then subsequently brazed together. This makes it possible to not only eliminate the supports in the blade, but also to improve the surface quality. The result is a fully functional component that can be used in hot path rig testing in order to deliver quick feedback to the design engineers.

Siemens optimized various production steps in preparation for this idea. After manufacturing via laser, the parts are precisely measured, subjected to finishing, and then joined using high temperature brazing.

This modular production of turbine blades offers significant potential for other components as well. It would make it possible to connect cast and SLM-made parts, leaving just the complex or variable parts to be produced using SLM. At the same time, it would also facilitate the production of parts with difficult geometries that are currently too large for the SLM process.

Contact:

Dipl.-Ing. Jeroen Risse
Group Rapid Manufacturing
Telephone +49 241 8906-135
jeroen.risse@ilt.fraunhofer.de

Dr.-Ing. Wilhelm Meiners
Group Manager Rapid Manufacturing
Telephone +49 241 8906-301
wilhelm.meiners@ilt.fraunhofer.de

Fraunhofer Institute for Laser Technology ILT
Steinbachstraße 15
52074 Aachen, Germany

Weitere Informationen:

http://www.ilt.fraunhofer.de/en.html
http://s.fhg.de/BYt

Petra Nolis | Fraunhofer-Institut für Lasertechnik ILT

Further reports about: Fraunhofer-Institut Gas Turbine ILT Lasertechnik Rapid Manufacturing Turbine hot gas

More articles from Machine Engineering:

nachricht Fraunhofer IWS Dresden collaborates with a strong research partner in Singapore
15.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht Russian researchers developed high-pressure natural gas operating turbine-generator
06.02.2017 | Peter the Great Saint-Petersburg Polytechnic University

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>