Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Measuring paper thickness fast and reliably

14.03.2016

The Fraunhofer Institute for Laser Technology ILT is unveiling its “bd-2” sensor for thickness measurements of paper and board webs. Within a measurement range of 8 millimeters, the system can accurately measure the thickness and embossed depth with a precision better than 200 nm. The small sensor head coupled with high-speed data processing facilitates inline measurements in the production line. At CONTROL 2016 in Stuttgart, Germany, visitors can experience the “bd-2” sensor live.

Materials and quality control must meet increasingly stringent requirements in the paper processing industry. To provide thickness measurement, for instance, sensors must now be accurate down to the sub-micron range yet nonetheless operate in the production line as fast as possible and with minimal maintenance.


Picture 1: The “bd-2” thickness measurement system based on bidirectional sensors.

© Fraunhofer ILT, Aachen, Germany.


Picture 2: Paper webs in production process.

© fotolia. Please note that this picture might only be used in connection with this press release.

To meet these requirements the optical thickness measurement system “bd-2” (for bidirectional measurements) was developed at Fraunhofer ILT. The sensor sends a measuring beam onto the material surface and the reflected signal allows the distance to be measured with a precision of 200 nm. The sensor has been previously used, e.g. for surveying cold-rolled metal sheets.

A special feature of the system is the 70 kHz sampling rate. This allows for an absolute and continuous measurement of the distance to the surface during running production. The thickness measurement system “bd-2” comprises two sensing heads mounted in a C-frame to measure the thickness of the product passing by.

“bd-2” is suited to measure the thickness of paper and board webs in the range of 10 µm to several millimeters. Untreated surfaces are measured as safe as painted, embossed, smoothed or supercalendered.

A new sensing head simplifies the entire measurement process

Compared with established methods – such as radiometric, capacitive or inductive methods – the new sensor offers several advantages:

Since irradiated and reflected beams are propagating along the same line, alignment efforts are eliminated as transmitter and receiver no longer have to be adjusted to each other.

To send and to receive the backscattered radiation only a small measuring head with a weight of 100 g is needed. It uses a small window with a 2 mm diameter, the cast protected by an air stream in harshest environments reliably against contamination. Compared with conventional sensors its spot diameter is about 100 microns, so that even the smallest structures can be detected.

Control processes safely

The new sensor »bd-2" provides the accuracy of interferometric measurement methods and is significantly faster than the established measurement technologies. The complete system processes up to 70,000 thickness readings per second. So, inline measurements are possible even at high product speeds that enable fast feedback loops to control and optimize production processes.

Sensor sets new standards for industrial manufacturing

In terms of speed and integrability, “bd-2” sets new standards for process control and quality assurance in various industry segments. The process paves the way for the transition from laboratory-based individual measurement to continuous inline production control. This is why the Fraunhofer ILT experts are targeting industry customers looking to meet higher accuracy requirements in series production, offering them not just complete systems but also extensive consulting in relation to process integration. The sensors were tested extensively in pilot plant operation, first industry partners have already carried out test runs with the system in their production lines.

Fraunhofer ILT at CONTROL 2016

The interferometric thickness sensor »bd-2« will be showcased at this year’s CONTROL in Stuttgart, Germany on the stand 1502of the Fraunhofer Alliance Vision in Hall 1.

Contact

Dr. Stefan Hölters MBA
Interferometrical Sensors
Telephone +49 241 8906-436
stefan.hoelters@ilt.fraunhofer.de

PD Dr. Reinhard Noll
Head of the Measurement
Technology and EUV Sources
Competence Area
Telephone +49 241 8906-138
reinhard.noll@ilt.fraunhofer.de

Weitere Informationen:

http://www.ilt.fraunhofer.de/en.html

Petra Nolis | Fraunhofer-Institut für Lasertechnik ILT

More articles from Machine Engineering:

nachricht LZH optimizes laser-based CFRP reworking for the aircraft industry
24.11.2016 | Laser Zentrum Hannover e.V.

nachricht eldec generators CUSTOM LINE: Customized energy source for perfect induction heating
23.11.2016 | EMAG eldec Induction GmbH

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>