Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Measuring paper thickness fast and reliably

14.03.2016

The Fraunhofer Institute for Laser Technology ILT is unveiling its “bd-2” sensor for thickness measurements of paper and board webs. Within a measurement range of 8 millimeters, the system can accurately measure the thickness and embossed depth with a precision better than 200 nm. The small sensor head coupled with high-speed data processing facilitates inline measurements in the production line. At CONTROL 2016 in Stuttgart, Germany, visitors can experience the “bd-2” sensor live.

Materials and quality control must meet increasingly stringent requirements in the paper processing industry. To provide thickness measurement, for instance, sensors must now be accurate down to the sub-micron range yet nonetheless operate in the production line as fast as possible and with minimal maintenance.


Picture 1: The “bd-2” thickness measurement system based on bidirectional sensors.

© Fraunhofer ILT, Aachen, Germany.


Picture 2: Paper webs in production process.

© fotolia. Please note that this picture might only be used in connection with this press release.

To meet these requirements the optical thickness measurement system “bd-2” (for bidirectional measurements) was developed at Fraunhofer ILT. The sensor sends a measuring beam onto the material surface and the reflected signal allows the distance to be measured with a precision of 200 nm. The sensor has been previously used, e.g. for surveying cold-rolled metal sheets.

A special feature of the system is the 70 kHz sampling rate. This allows for an absolute and continuous measurement of the distance to the surface during running production. The thickness measurement system “bd-2” comprises two sensing heads mounted in a C-frame to measure the thickness of the product passing by.

“bd-2” is suited to measure the thickness of paper and board webs in the range of 10 µm to several millimeters. Untreated surfaces are measured as safe as painted, embossed, smoothed or supercalendered.

A new sensing head simplifies the entire measurement process

Compared with established methods – such as radiometric, capacitive or inductive methods – the new sensor offers several advantages:

Since irradiated and reflected beams are propagating along the same line, alignment efforts are eliminated as transmitter and receiver no longer have to be adjusted to each other.

To send and to receive the backscattered radiation only a small measuring head with a weight of 100 g is needed. It uses a small window with a 2 mm diameter, the cast protected by an air stream in harshest environments reliably against contamination. Compared with conventional sensors its spot diameter is about 100 microns, so that even the smallest structures can be detected.

Control processes safely

The new sensor »bd-2" provides the accuracy of interferometric measurement methods and is significantly faster than the established measurement technologies. The complete system processes up to 70,000 thickness readings per second. So, inline measurements are possible even at high product speeds that enable fast feedback loops to control and optimize production processes.

Sensor sets new standards for industrial manufacturing

In terms of speed and integrability, “bd-2” sets new standards for process control and quality assurance in various industry segments. The process paves the way for the transition from laboratory-based individual measurement to continuous inline production control. This is why the Fraunhofer ILT experts are targeting industry customers looking to meet higher accuracy requirements in series production, offering them not just complete systems but also extensive consulting in relation to process integration. The sensors were tested extensively in pilot plant operation, first industry partners have already carried out test runs with the system in their production lines.

Fraunhofer ILT at CONTROL 2016

The interferometric thickness sensor »bd-2« will be showcased at this year’s CONTROL in Stuttgart, Germany on the stand 1502of the Fraunhofer Alliance Vision in Hall 1.

Contact

Dr. Stefan Hölters MBA
Interferometrical Sensors
Telephone +49 241 8906-436
stefan.hoelters@ilt.fraunhofer.de

PD Dr. Reinhard Noll
Head of the Measurement
Technology and EUV Sources
Competence Area
Telephone +49 241 8906-138
reinhard.noll@ilt.fraunhofer.de

Weitere Informationen:

http://www.ilt.fraunhofer.de/en.html

Petra Nolis | Fraunhofer-Institut für Lasertechnik ILT

More articles from Machine Engineering:

nachricht PRESTO – Highly Dynamic Powerhouses
15.05.2017 | JULABO GmbH

nachricht Making lightweight construction suitable for series production
24.04.2017 | Laser Zentrum Hannover e.V.

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>