Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making lightweight construction suitable for series production

24.04.2017

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has developed processes for cutting three-dimensional components, using an actual component from the automotive branch. The process uses a newly developed high-power disc laser from the Trumpf Laser GmbH, with a pulse duration of tp = 30 ns and a maximum average output power of PL = 1500 W.


On the way to series production: 3D CFRP processing.

Photo: LZH


Automatically scarfed CFRP surface.

Photo: LZH

The KMS Automation GmbH has developed clamping devices which are adapted to the special features of laser material processing. An exhaust system to capture the process emissions is directly integrated in the clamping unit. The companies Volkswagen AG and INVENT GmbH have investigated the influence of laser processing on the characteristics of the component as well as on the subsequent processes.

Repairs: Scarfing curved surfaces

„Repairing three-dimensional CFRP components is presently very time-consuming and costly,” explains Sven Blümel, project manager from the Composites Group at the LZH. “We can now scarf components with curved surfaces with short process times, as a preparation for repair. Subsequently, the scarfed areas are closed with a so-called patch, an accurately fitting replacement part. This is an important step in increasing the lifetime of CFRP body parts.” This concept for the following repair steps was developed by the Institute of Polymer Materials and Plastics Engineering (PuK) of the Clausthal University of Technology.

Directly capturing process emissions

Emissions from standard processes must be known and controllable, in order to ensure a safe workplace. This is why the Safety Technology Group of the LZH has investigated the emissions from the cutting and scarfing processes. Based on the composition of the process emissions, the Jenoptik Automatisierungstechnik GmbH has developed a completely regenerative, continuously working, exhaust cleaning system that does not need additional filter material.

Applications have been the focus of the project HolQueSt. The Volkswagen AG has accompanied the complete development process. “The successful completion of the project has brought us a step closer to series production”, concluded Sven Blümel.

About HolQueSt 3D

The project „3D high-power laser processing for increasing the quality and efficiency for the reliable, automated manufacturing of CFRP lightweight construction structures” (HolQueSt 3D) was subsidized with approximately 4 million euros by the Federal Ministry of Education and Research (BMBF) within the funding initiative “Photonic Processes and Tools for Ressource-Efficient Lightweight Construction”. The project partners are Volkswagen AG, Jenoptik Automatisierungstechnik GmbH, Trumpf Laser GmbH, Invent GmbH, KMS Automation GmbH, the Clausthal University of Technology and the Laser Zentrum Hannover e.V.

Melanie Gauch | Laser Zentrum Hannover e.V.
Further information:
http://www.lzh.de/

More articles from Machine Engineering:

nachricht Scientists from Hannover develop a novel lightweight production process
27.09.2017 | IPH - Institut für Integrierte Produktion Hannover gGmbH

nachricht PRESTO – Highly Dynamic Powerhouses
15.05.2017 | JULABO GmbH

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

Im Focus: Support Free with “TwoCure” – Innovation in Resin-Based 3D Printing

The Fraunhofer Institute for Laser Technology ILT and Rapid Shape GmbH are working together to further develop resin-based 3D printing. The new “TwoCure” process requires no support structures and is significantly more efficient and productive than conventional 3D printing techniques for plastic components. Experts from Fraunhofer ILT will be presenting the state-funded joint development that makes use of the interaction of light and cold in forming the components at formnext 2017 from November 14 to 17 in Frankfurt am Main.

Much like stereolithography, one of the best-known processes for printing 3D plastic components works using photolithographic light exposure that causes liquid...

Im Focus: Researchers develop chip-scale optical abacus

A team of researchers led by Prof. Wolfram Pernice from the Institute of Physics at Münster University has developed a miniature abacus on a microchip which calculates using light signals. With it they are paving the way to the development of new types of computer in which, as in the human brain, the computing and storage functions are combined in one element.

Researchers at the universities of Münster, Exeter and Oxford have developed a miniature “abacus” which can be used for calculating with light signals. With it...

Im Focus: Lightwave controlled nanoscale electron acceleration sets the pace

Extremely short electron bunches are key to many new applications including ultrafast electron microscopy and table-top free-electron lasers. A german team of physicists from Rostock University, the Max Born Institute in Berlin, the Ludwig-Maxmilians-Universität Munich, and the Max Planck Institute of Quantum Optics in Garching has now shown how electrons can be accelerated in an extreme and well-controlled way with laser light, while crossing a silver particle of just a few nanometers.

Of particular importance for potential applications is the ability to manipulate the acceleration process, known as a swing-by maneuver from space travel, with...

Im Focus: Newly Discovered microRNA Regulates Mobility of Tumor Cells

Cancer cells can reactivate a cellular process that is an essential part of embryonic development. This allows them to leave the primary tumor, penetrate the surrounding tissue and form metastases in peripheral organs. In the journal Nature Communications, researchers from the University of Basel’s Department of Biomedicine provide an insight into the molecular networks that regulate this process.

During an embryo’s development, epithelial cells can break away from the cell cluster, modify their cell type-specific properties, and migrate into other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

 
Latest News

A strange new world of light

03.11.2017 | Physics and Astronomy

Warm air helped make 2017 ozone hole smallest since 1988

03.11.2017 | Earth Sciences

Physicists show how lifeless particles can become 'life-like' by switching behaviors

03.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>