Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lightweight robots in manual assembly

13.09.2016

Study rounds up initial experiences from companies using the technology

What is the current state of cage-free robot technology in German industry? This was the question Fraunhofer IAO investigated in the study “Lightweight robots in manual assembly.” Based on case studies in factories already using lightweight robots for manufacturing, the study looked at their experiences with implementing the robots, gaining acceptance from human coworkers, and improving operational efficiency.

In recent years, human-robot cooperation – also known as human-robot collaboration, or HRC – has taken center stage at trade fairs. The term applies to any situation where robots work directly alongside humans without safety barriers on the manufacturing floor.

In such cases, the work zones of robots and workers overlap instead of being strictly separated. The low entry prices and big media interest in the technology created a wave of hype. But is the cost really all that low, and are the new robots really safe? Or is it a case of companies having unrealistic expectations?

Meet your new robotic workmate: initial hurdles and sample applications

In the course of the study “Lightweight robots in manual assembly – best to start simply,” Fraunhofer IAO researched cage-free robot use in Germany in industrial companies and in publications. From some 50 applications, 25 were ultimately selected for further investigation – of these, 18 were taken from personal interviews and 7 from publications. The decisive criterion for selection was that the application was already operating on a production line or that the robots were already being used by several companies.

First and foremost, the study reveals that the new technology works! This was confirmed by all the one-to-one interviews conducted. Even if the technology itself is not being called into question, however, there are still some uncertainties – for example, as regards new occupational safety standards and guidelines.

In addition, the cost of cage-free operation is significantly higher than initially expected. The study also showed that humans and robots are still primarily working alongside each other in a form of coexistence, with genuine collaborative applications virtually non-existent in production facilities at the present time. To ensure that the purchase costs of a lightweight robot pay off, it is also important to keep the new robotic worker busy.

Who dares wins: take the plunge!

How can companies benefit in the future from current knowledge and experience? After the project, the interviewees all agreed that the bottom line is: “Don’t let obstacles put you off – best to start simply!” Fraunhofer IAO’s Manfred Bender, who headed the study, explains: “What’s particularly important here is to choose an application that will work. In other words, the application must not be too complex and must have simple requirements in regard to materials provisioning. For safe assembly processes, pointed or sharp parts should also be excluded.”

The study is available both as a printed document and as a PDF for download at http://s.fhg.de/Studie-LBR. The follow-up project “Rococo: designing human-robot assembly-line collaborations that are cooperative and integrated” starts on October 1, 2016. It is being funded by the German Federal Ministry of Education and Research (BMBF) and coordinated by the Project Management Agency Karlsruhe (PTKA).

Contact:
Manfred Bender
E-Mail: manfred.bender@iao.fraunhofer.de
Phone: +49 711 970-2056

Weitere Informationen:

https://www.iao.fraunhofer.de/lang-en/about-us/press-and-media/1276-lightweight-...
http://s.fhg.de/Studie-LBR
https://www.iao.fraunhofer.de/lang-de/veranstaltungen/eventdetail/381.html

Juliane Segedi | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

Further reports about: Arbeitswirtschaft IAO operational efficiency robot technology

More articles from Machine Engineering:

nachricht Satellite-based Laser Measurement Technology against Climate Change
17.01.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht LZH optimizes laser-based CFRP reworking for the aircraft industry
24.11.2016 | Laser Zentrum Hannover e.V.

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>