Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lightweight robots in manual assembly

13.09.2016

Study rounds up initial experiences from companies using the technology

What is the current state of cage-free robot technology in German industry? This was the question Fraunhofer IAO investigated in the study “Lightweight robots in manual assembly.” Based on case studies in factories already using lightweight robots for manufacturing, the study looked at their experiences with implementing the robots, gaining acceptance from human coworkers, and improving operational efficiency.

In recent years, human-robot cooperation – also known as human-robot collaboration, or HRC – has taken center stage at trade fairs. The term applies to any situation where robots work directly alongside humans without safety barriers on the manufacturing floor.

In such cases, the work zones of robots and workers overlap instead of being strictly separated. The low entry prices and big media interest in the technology created a wave of hype. But is the cost really all that low, and are the new robots really safe? Or is it a case of companies having unrealistic expectations?

Meet your new robotic workmate: initial hurdles and sample applications

In the course of the study “Lightweight robots in manual assembly – best to start simply,” Fraunhofer IAO researched cage-free robot use in Germany in industrial companies and in publications. From some 50 applications, 25 were ultimately selected for further investigation – of these, 18 were taken from personal interviews and 7 from publications. The decisive criterion for selection was that the application was already operating on a production line or that the robots were already being used by several companies.

First and foremost, the study reveals that the new technology works! This was confirmed by all the one-to-one interviews conducted. Even if the technology itself is not being called into question, however, there are still some uncertainties – for example, as regards new occupational safety standards and guidelines.

In addition, the cost of cage-free operation is significantly higher than initially expected. The study also showed that humans and robots are still primarily working alongside each other in a form of coexistence, with genuine collaborative applications virtually non-existent in production facilities at the present time. To ensure that the purchase costs of a lightweight robot pay off, it is also important to keep the new robotic worker busy.

Who dares wins: take the plunge!

How can companies benefit in the future from current knowledge and experience? After the project, the interviewees all agreed that the bottom line is: “Don’t let obstacles put you off – best to start simply!” Fraunhofer IAO’s Manfred Bender, who headed the study, explains: “What’s particularly important here is to choose an application that will work. In other words, the application must not be too complex and must have simple requirements in regard to materials provisioning. For safe assembly processes, pointed or sharp parts should also be excluded.”

The study is available both as a printed document and as a PDF for download at http://s.fhg.de/Studie-LBR. The follow-up project “Rococo: designing human-robot assembly-line collaborations that are cooperative and integrated” starts on October 1, 2016. It is being funded by the German Federal Ministry of Education and Research (BMBF) and coordinated by the Project Management Agency Karlsruhe (PTKA).

Contact:
Manfred Bender
E-Mail: manfred.bender@iao.fraunhofer.de
Phone: +49 711 970-2056

Weitere Informationen:

https://www.iao.fraunhofer.de/lang-en/about-us/press-and-media/1276-lightweight-...
http://s.fhg.de/Studie-LBR
https://www.iao.fraunhofer.de/lang-de/veranstaltungen/eventdetail/381.html

Juliane Segedi | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

Further reports about: Arbeitswirtschaft IAO operational efficiency robot technology

More articles from Machine Engineering:

nachricht It Takes Two: Structuring Metal Surfaces Efficiently with Lasers
15.03.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht FOSA LabX 330 Glass – Coating Flexible Glass in a Roll-to-Roll Process
07.03.2017 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Electrical 'switch' in brain's capillary network monitors activity and controls blood flow

27.03.2017 | Health and Medicine

Clock stars: Astrocytes keep time for brain, behavior

27.03.2017 | Life Sciences

Sun's impact on climate change quantified for first time

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>