Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lightweight robots in manual assembly

13.09.2016

Study rounds up initial experiences from companies using the technology

What is the current state of cage-free robot technology in German industry? This was the question Fraunhofer IAO investigated in the study “Lightweight robots in manual assembly.” Based on case studies in factories already using lightweight robots for manufacturing, the study looked at their experiences with implementing the robots, gaining acceptance from human coworkers, and improving operational efficiency.

In recent years, human-robot cooperation – also known as human-robot collaboration, or HRC – has taken center stage at trade fairs. The term applies to any situation where robots work directly alongside humans without safety barriers on the manufacturing floor.

In such cases, the work zones of robots and workers overlap instead of being strictly separated. The low entry prices and big media interest in the technology created a wave of hype. But is the cost really all that low, and are the new robots really safe? Or is it a case of companies having unrealistic expectations?

Meet your new robotic workmate: initial hurdles and sample applications

In the course of the study “Lightweight robots in manual assembly – best to start simply,” Fraunhofer IAO researched cage-free robot use in Germany in industrial companies and in publications. From some 50 applications, 25 were ultimately selected for further investigation – of these, 18 were taken from personal interviews and 7 from publications. The decisive criterion for selection was that the application was already operating on a production line or that the robots were already being used by several companies.

First and foremost, the study reveals that the new technology works! This was confirmed by all the one-to-one interviews conducted. Even if the technology itself is not being called into question, however, there are still some uncertainties – for example, as regards new occupational safety standards and guidelines.

In addition, the cost of cage-free operation is significantly higher than initially expected. The study also showed that humans and robots are still primarily working alongside each other in a form of coexistence, with genuine collaborative applications virtually non-existent in production facilities at the present time. To ensure that the purchase costs of a lightweight robot pay off, it is also important to keep the new robotic worker busy.

Who dares wins: take the plunge!

How can companies benefit in the future from current knowledge and experience? After the project, the interviewees all agreed that the bottom line is: “Don’t let obstacles put you off – best to start simply!” Fraunhofer IAO’s Manfred Bender, who headed the study, explains: “What’s particularly important here is to choose an application that will work. In other words, the application must not be too complex and must have simple requirements in regard to materials provisioning. For safe assembly processes, pointed or sharp parts should also be excluded.”

The study is available both as a printed document and as a PDF for download at http://s.fhg.de/Studie-LBR. The follow-up project “Rococo: designing human-robot assembly-line collaborations that are cooperative and integrated” starts on October 1, 2016. It is being funded by the German Federal Ministry of Education and Research (BMBF) and coordinated by the Project Management Agency Karlsruhe (PTKA).

Contact:
Manfred Bender
E-Mail: manfred.bender@iao.fraunhofer.de
Phone: +49 711 970-2056

Weitere Informationen:

https://www.iao.fraunhofer.de/lang-en/about-us/press-and-media/1276-lightweight-...
http://s.fhg.de/Studie-LBR
https://www.iao.fraunhofer.de/lang-de/veranstaltungen/eventdetail/381.html

Juliane Segedi | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

Further reports about: Arbeitswirtschaft IAO operational efficiency robot technology

More articles from Machine Engineering:

nachricht PRESTO – Highly Dynamic Powerhouses
15.05.2017 | JULABO GmbH

nachricht Making lightweight construction suitable for series production
24.04.2017 | Laser Zentrum Hannover e.V.

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>